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5
COMPUTING 

CORRELATION 
COEFFICIENTS
Ice Cream and Crime

Difficulty Scale ☺ ☺ 
(moderately hard)

WHAT YOU WILL LEARN  
IN THIS CHAPTER

• Understanding what correlations are and how they work

• Computing a simple correlation coefficient

• Interpreting the value of the correlation coefficient

• Understanding what other types of correlations exist and when they 
should be used

WHAT ARE CORRELATIONS  
ALL ABOUT?
Measures of central tendency and measures of variability are not the only descrip-
tive statistics that we are interested in using to get a picture of what a set of scores 
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Chapter 5 ■ Computing Correlation Coefficients  77

looks like. You have already learned that knowing the values of the one most repre-
sentative score (central tendency) and a measure of spread or dispersion (variability) 
is critical for describing the characteristics of a distribution.

However, sometimes we are as interested in the relationship between variables—or, 
to be more precise, how the value of one variable changes when the value of another 
variable changes. The way we express this interest is through the computation of 
a simple correlation coefficient. For example, what’s the relationship between age 
and strength? Income and years of education? Memory skills and amount of drug 
use? Your political attitudes and the attitudes of your parents?

A correlation coefficient is a numerical index that reflects the relationship or asso-
ciation between two variables. The value of this descriptive statistic ranges between 
−1.00 and +1.00. A correlation between two variables is sometimes referred to as a 
bivariate (for two variables) correlation. Even more specifically, the type of correla-
tion that we will talk about in the majority of this chapter is called the Pearson 
product-moment correlation, named for its inventor, Karl Pearson.

The Pearson correlation coefficient examines the relationship between 
two variables, but both of those variables are continuous in nature. In other  
words, they are variables that can assume any value along some underlying 
continuum; examples include height (you really can be 5 feet 6.1938574673 
inches tall), age, test score, and income. Remember in Chapter 2, when we 
talked about levels of measurement? Interval and ratio levels of measurement 
are continuous. But a host of other variables are not continuous. They’re called 
discrete or categorical variables, and examples are race (such as black and 
white), social class (such as high and low), and political affiliation (such as 
Democrat and Republican). In Chapter 2, we called these types of variables 
nominal level. You need to use other correlational techniques, such as the phi 
correlation, in these cases. These topics are for a more advanced course, but 
you should know they are acceptable and very useful techniques. We mention 
them briefly later on in this chapter.

Other types of correlation coefficients measure the relationship between more than 
two variables, and we’ll talk about one of these in some more advanced chapters 
later on (which you are looking forward to already, right?).

Types of Correlation Coefficients: Flavor 1 and Flavor 2

A correlation reflects the dynamic quality of the relationship between variables. In 
doing so, it allows us to understand whether variables tend to move in the same or 
opposite directions in relationship to each other. If variables change in the same 
direction, the correlation is called a direct correlation or a positive correlation. 
If variables change in opposite directions, the correlation is called an indirect 
correlation or a negative correlation. Table 5.1 shows a summary of these rela-
tionships.

Copyright ©2020 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. 

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



78  Part II ■ Σigma Freud and Descriptive Statistics

TABLE 5.1  Types of Correlations

What Happens 
to Variable X

What Happens 
to Variable Y

Type of 
Correlation Value Example

X increases in 
value.

Y increases in 
value.

Direct or positive Positive, ranging 
from .00 to +1.00

The more time you 
spend studying, the 
higher your test score 
will be.

X decreases in 
value.

Y decreases in 
value.

Direct or positive Positive, ranging 
from .00 to +1.00

The less money you 
put in the bank, the 
less interest you will 
earn.

X increases in 
value.

Y decreases in 
value.

Indirect or 
negative

Negative, 
ranging from 
−1.00 to .00

The more you exercise, 
the less you will weigh.

X decreases in 
value.

Y increases in 
value.

Indirect or 
negative

Negative, 
ranging from 
–1.00 to .00

The less time you take 
to complete a test, the 
more items you will 
get wrong.

Now, keep in mind that the examples in the table reflect generalities, for example, 
regarding time to complete a test and the number of items correct on that test. In 
general, the less time that is taken on a test, the lower the score. Such a conclusion is 
not rocket science, because the faster one goes, the more likely one is to make care-
less mistakes such as not reading instructions correctly. But, of course, some people 
can go very fast and do very well. And other people go very slowly and don’t do well 
at all. The point is that we are talking about the average performance of a group of 
people on two different variables. We are computing the correlation between the 
two variables for the group of people, not for any one particular person.

There are several easy (but important) things to remember about the correlation 
coefficient:

• A correlation can range in value from −1.00 to +1.00.

• The absolute value of the coefficient reflects the strength of the correlation. 
So a correlation of −.70 is stronger than a correlation of +.50. One 
frequently made mistake regarding correlation coefficients occurs when 
students assume that a direct or positive correlation is always stronger (i.e., 
“better”) than an indirect or negative correlation because of the sign and 
nothing else.

• To calculate a correlation, you need exactly two variables and at least  
two people.
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Chapter 5 ■ Computing Correlation Coefficients  79

• Another easy mistake is to assign a value judgment to the sign of the 
correlation. Many students assume that a negative relationship is not good 
and a positive one is good. But think of the example from Table 5.1 where 
exercise and weight have a negative correlation. That negative correlation is 
a positive thing! That’s why, instead of using the terms negative and positive, 
you might prefer to use the terms indirect and direct to communicate 
meaning more clearly.

• The Pearson product-moment correlation coefficient is represented by the 
small letter r with a subscript representing the variables that are being 
correlated. You’d think that P for Pearson might be used as the symbol 
for this correlation, but in Greek, the P letter actually is similar to the 
English “r” sound, so r is used. P is used for the theoretical correlation 
in a population, so don’t feel sorry for Pearson. (If it helps, think of r as 
standing for relationship.) For example,

{ rxy is the correlation between variable X and variable Y.

{ rweight-height is the correlation between weight and height.

{ rSAT.GPA is the correlation between SAT score and grade point average 
(GPA).

The correlation coefficient reflects the amount of variability that is shared between 
two variables and what they have in common. For example, you can expect an 
individual’s height to be correlated with an individual’s weight because these two 
variables share many of the same characteristics, such as the individual’s nutritional 
and medical history, general health, and genetics, and, of course, taller people have 
more mass usually. On the other hand, if one variable does not change in value and 
therefore has nothing to share, then the correlation between it and another variable 
is zero. For example, if you computed the correlation between age and number 
of years of school completed, and everyone was 25 years old, there would be no 
correlation between the two variables because there is literally no information (no 
variability) in age available to share.

Likewise, if you constrain or restrict the range of one variable, the correlation 
between that variable and another variable will be less than if the range is not con-
strained. For example, if you correlate reading comprehension and grades in school 
for very high-achieving children, you’ll find the correlation to be lower than if you 
computed the same correlation for children in general. That’s because the reading 
comprehension score of very high-achieving students is quite high and much less 
variable than it would be for all children. The moral? When you are interested in 
the relationship between two variables, try to collect sufficiently diverse data—that 
way, you’ll get the truest representative result. And how do you do that? Measure a 
variable as precisely as possible (use higher, more informative levels of measurement) 
and use a sample that varies greatly on the characteristics you are interested in.
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80  Part II ■ Σigma Freud and Descriptive Statistics

COMPUTING A SIMPLE  
CORRELATION COEFFICIENT
The computational formula for the simple Pearson product-moment correla-
tion coefficient between a variable labeled X and a variable labeled Y is shown in 
Formula 5.1:

 

r
n XY X Y

n X X Y
xy =

− ∑∑∑

− ∑( )∑



 − ∑( )∑





2 2 2 2n Y
,
 

(5.1)

where

• rxy is the correlation coefficient between X and Y;

• n is the size of the sample;

• X is each individual’s score on the X variable;

• Y is each individual’s score on the Y variable;

• XY is the product of each X score times its corresponding Y score;

• X 2 is each individual’s X score, squared; and

• Y 2 is each individual’s Y score, squared.

Here are the data we will use in this example:

X Y X 2 Y 2 XY

 2  3   4   9   6

 4  2  16   4   8

 5  6  25  36  30

 6  5  36  25  30

 4  3  16   9  12

 7  6  49  36  42

 8  5  64  25  40

 5  4  25  16  20

 6  4  36  16  24

 7  5  49  25  35

Total, Sum, or ∑ 54 43 320 201 247
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Chapter 5 ■ Computing Correlation Coefficients  81

Before we plug the numbers in, let’s make sure you understand what each one 
represents:

• ∑X, or the sum of all the X values, is 54.

• ∑Y, or the sum of all the Y values, is 43.

• ∑X 2, or the sum of each X value squared, is 320.

• ∑Y 2, or the sum of each Y value squared, is 201.

• ∑XY, or the sum of the products of X and Y, is 247.

It’s easy to confuse the sum of a set of values squared and the sum of the squared 
values. The sum of a set of values squared is taking values such as 2 and 3, summing 
them (to be 5), and then squaring that (which is 25). The sum of the squared values 
is taking values such as 2 and 3, squaring them (to get 4 and 9, respectively), and 
then adding those together (to get 13). Just look for the parentheses as you work.

Here are the steps in computing the correlation coefficient:

1. List the two values for each participant. You should do this in a column 
format so as not to get confused. Use graph paper if working manually or 
SPSS or some other data analysis tool if working digitally.

2. Compute the sum of all the X values and compute the sum of all the  
Y values.

3. Square each of the X values and square each of the Y values.

4. Find the sum of the XY products.

These values are plugged into the equation you see in Formula 5.2:

 
rxy =

( ) ( )

[( ) ][( ) ]
.10 247 54 43

320 54 10 201 432 2

× − ×

× − × −10  (5.2)

Ta-da! And you can see the answer in Formula 5.3:

 
rxy = =

148
213 83

692
.

. .  (5.3)

What’s really interesting about correlations is that they measure the amount of dis-
tance that one variable covaries in relation to another. So, if both variables are highly 
variable (have lots of wide-ranging values), the correlation between them is more 
likely to be high than if not. Now, that’s not to say that lots of variability guarantees 
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82  Part II ■ Σigma Freud and Descriptive Statistics

a higher correlation, because the scores have to vary in a systematic way. But if the 
variance is constrained in one variable, then no matter how much the other variable 
changes, the correlation will be lower. For example, let’s say you are examining the 
correlation between academic achievement in high school and first-year grades in 
college and you look at only the top 10% of the class. Well, that top 10% is likely to 
have very similar grades, introducing no variability and no room for the one variable 
to vary as a function of the other. Guess what you get when you correlate one variable 
with another variable that does not change (that is, has no variability)? rxy = 0, that’s 
what. The lesson here? Variability works, and you should not artificially limit it.

The Scatterplot: A Visual Picture of a Correlation

There’s a very simple way to visually represent a correlation: Create what is called a 
scatterplot, or scattergram (in SPSS lingo it’s a scatter/dot graph). This is simply 
a plot of each set of scores on separate axes.

Here are the steps to complete a scattergram like the one you see in Figure 5.1, which 
plots the 10 sets of scores for which we computed the sample correlation earlier.

FIGURE 5.1  A simple scattergram
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9876543210

Y

X

Data point (2,3)

1. Draw the x-axis and the y-axis. Usually, the X variable goes on the horizontal 
axis and the Y variable goes on the vertical axis.

2. Mark both axes with the range of values that you know to be the case for 
the data. For example, the value of the X variable in our example ranges 
from 2 to 8, so we marked the x-axis from 0 to 9. There’s no harm in 
marking the axes a bit low or high—just as long as you allow room for the 
values to appear. The value of the Y variable ranges from 2 to 6, and we 
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Chapter 5 ■ Computing Correlation Coefficients  83

marked that axis from 0 to 9. Having similarly labeled (and scaled) axes 
can sometimes make the finished scatterplot easier to understand.

3. Finally, for each pair of scores (such as 2 and 3, as shown in Figure 5.1), 
we entered a dot on the chart by marking the place where 2 falls on the 
x-axis and 3 falls on the y-axis. The dot represents a data point, which is 
the intersection of the two values.

When all the data points are plotted, what does such an illustration tell us about 
the relationship between the variables? To begin with, the general shape of the 
collection of data points indicates whether the correlation is direct (positive) or 
indirect (negative).

A positive slope occurs when the data points group themselves in a cluster from the 
lower left-hand corner on the x- and y-axes through the upper right-hand corner. A 
negative slope occurs when the data points group themselves in a cluster from the 
upper left-hand corner on the x- and y-axes through the lower right-hand corner.

Here are some scatterplots showing very different correlations where you can see 
how the grouping of the data points reflects the sign and strength of the correlation 
coefficient.

Figure 5.2 shows a perfect direct correlation, where rxy = 1.00 and all the data 
points are aligned along a straight line with a positive slope.

FIGURE 5.2  A perfect direct, or positive, correlation
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84  Part II ■ Σigma Freud and Descriptive Statistics

If the correlation were perfectly indirect, the value of the correlation coefficient 
would be −1.00, and the data points would align themselves in a straight line as 
well but from the upper left-hand corner of the chart to the lower right. In other 
words, the line that connects the data points would have a negative slope. And, 
remember, in both examples, the strength of the association is the same; it is only 
the direction that is different.

Don’t ever expect to find a perfect correlation between any two variables in the 
behavioral or social sciences. Such a correlation would say that two variables are 
so perfectly related, they share everything in common. In other words, knowing 
one is exactly like knowing the other. Just think about your classmates. Do you 
think they all share any one thing in common that is perfectly related to another of 
their characteristics across all those different people? Probably not. In fact, r values 
approaching .7 and .8 are just about the highest you’ll see.

In Figure 5.3, you can see the scatterplot for a strong (but not perfect) direct 
relationship where rxy = .70. Notice that the data points align themselves along a 
positive slope, although not perfectly.

Now, we’ll show you a strong indirect, or negative, relationship in Figure 5.4, 
where rxy = −.82. Notice that the data points align themselves on a negative slope 
from the upper left-hand corner of the chart to the lower right-hand corner.

That’s what different types of correlations look like, and you can really tell the gen-
eral strength and direction by examining the way the points are grouped.

FIGURE 5.3  A strong, but not perfect, direct relationship
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FIGURE 5.4  A strong, but not perfect, indirect relationship
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Not all correlations are reflected by a straight line showing the X and the  
Y values in a relationship called a linear correlation (see Chapter 16 for tons of 
fun stuff about this). The relationship may not be linear and may not be reflected 
by a straight line. Let’s take the correlation between age and memory. For the early 
years, the correlation is probably highly positive—the older children get, the bet-
ter their memory. Then, into young and middle adulthood, there isn’t much of a 
change or much of a correlation, because most young and middle adults maintain 
a good (but not necessarily increasingly better) memory. But with old age, memory 
begins to suffer, and there is an indirect relationship between memory and aging 
in the later years. If you take these together and look at the relationship over the 
life span, you find that the correlation between memory and age tends to look 
something like a curve where age continues to grow at the same rate but memory 
increases at first, levels off, and then decreases. It’s a curvilinear relationship, and 
sometimes, the best description of a relationship is that it is curvilinear.

The Correlation Matrix: Bunches of Correlations

What happens if you have more than two variables and you want to see correlations 
among all pairs of variables? How are the correlations illustrated? Use a correla-
tion matrix like the one shown in Table 5.2—a simple and elegant solution.

As you can see in these made-up data, there are four variables in the matrix: level of 
income (Income), level of education (Education), attitude toward voting (Attitude), 
and how sure they are that they will vote (Vote).
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86  Part II ■ Σigma Freud and Descriptive Statistics

TABLE 5.2  Correlation Matrix

Income Education Attitude Vote

Income 1.00 .574 −.08 −.291

Education .574 1.00 −.149 −.199

Attitude −.08 −.149 1.00 −.169

Vote −.291 −.199 −.169 1.00

For each pair of variables, there is a correlation coefficient. For example, the correla-
tion between income level and education is .574. Similarly, the correlation between 
income level and how sure people are that they will vote in the next election is 
−.291 (meaning that the higher the level of income, the less confident people were 
that they would vote).

In such a matrix with four variables, there are really only six correlation coefficients. 
Because variables correlate perfectly with themselves (those are the 1.00s down the 
diagonal), and because the correlation between Income and Vote is the same as the 
correlation between Vote and Income, the matrix creates a mirror image of itself.

You can use SPSS—or almost any other statistical analysis package, such as 
Excel—to easily create a matrix like the one you saw earlier. In applications like 
Excel, you can use the Data Analysis ToolPak.

You will see such matrices (the plural of matrix) when you read journal articles that 
use correlations to describe the relationships among several variables.

Understanding What the Correlation Coefficient Means

Well, we have this numerical index of the relationship between two variables, and 
we know that the higher the value of the correlation (regardless of its sign), the 
stronger the relationship is. But how can we interpret it and make it a more mean-
ingful indicator of a relationship?

Here are different ways to look at the interpretation of that simple rxy.

Using-Your-Thumb (or Eyeball) Method

Perhaps the easiest (but not the most informative) way to interpret the value of a 
correlation coefficient is by eyeballing it and using the information in Table 5.3. 
This is based on customary interpretations of the size of a correlation in the behav-
ioral sciences.

So, if the correlation between two variables is .3, you could safely conclude that the 
relationship is a moderate one—not strong but certainly not weak enough to say 
that the variables in question don’t share anything in common.
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This eyeball method is perfectly acceptable for a quick assessment of the strength 
of the relationship between variables, such as when you briefly evaluate data pre-
sented visually. But because this rule of thumb depends on a subjective judgment 
(of what’s “strong” or “weak”), we would like a more precise method. That’s what 
we’ll look at now.

SPECIAL EFFECTS!  
CORRELATION COEFFICIENT
Throughout the book, we will learn about various effect sizes and how to inter-
pret them. An effect size is an index of the strength of the relationship among 
variables, and with most statistical procedures we learn about, there will be an 
associated effect size that should be reported and interpreted. The correlation 
coefficient is a perfect example of an effect size as it quite literally is a measure 
of the strength of a relationship. Thanks to Table 5.3, we already know how to 
interpret it.

SQUARING THE CORRELATION 
COEFFICIENT: A DETERMINED EFFORT
Here’s the much more precise way to interpret the correlation coefficient: com-
puting the coefficient of determination. The coefficient of determination is the 
percentage of variance in one variable that is accounted for by the variance in the 
other variable. Quite a mouthful, huh?

Earlier in this chapter, we pointed out how variables that share something in com-
mon tend to be correlated with one another. If we correlated math and language 
arts grades for 100 fifth-grade students, we would find the correlation to be mod-
erately strong, because many of the reasons why children do well (or poorly) in 
math tend to be the same reasons why they do well (or poorly) in language arts. 
The number of hours they study, how bright they are, how interested their parents 
are in their schoolwork, the number of books they have at home, and more are all 

TABLE 5.3  Interpreting a Correlation Coefficient

Size of the Correlation Coefficient General Interpretation

.5 to 1.0 Strong relationship

.4 Moderate to strong relationship

.3 Moderate relationship

.2 Weak to moderate relationship

0 to .1 Weak or no relationship
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88  Part II ■ Σigma Freud and Descriptive Statistics

related to both math and language arts performance and account for differences 
between children (and that’s where the variability comes in).

The more these two variables share in common, the more they will be related. 
These two variables share variability—or the reason why children differ from one 
another. And on the whole, the brighter child who studies more will do better.

To determine exactly how much of the variance in one variable can be accounted 
for by the variance in another variable, the coefficient of determination is com-
puted by squaring the correlation coefficient.

For example, if the correlation between GPA and number of hours of study time is 
.70 (or rGPA.time = .70), then the coefficient of determination, represented by rGPA.time

2 , 
is .702, or .49. This means that 49% of the variance in GPA “can be explained by” 
or “is shared by” the variance in studying time. And the stronger the correlation, 
the more variance can be explained (which only makes good sense). The more 
two variables share in common (such as good study habits, knowledge of what’s 
expected in class, and lack of fatigue), the more information about performance on 
one score can be explained by the other score.

However, if 49% of the variance can be explained, this means that 51% cannot—
so even for a very strong correlation of .70, many of the reasons why scores on these 
variables tend to be different from one another go unexplained. This amount of 
unexplained variance is called the coefficient of alienation (also called the coef-
ficient of nondetermination). Don’t worry. No aliens here. This isn’t X-Files or 
Walking Dead stuff—it’s just the amount of variance in Y not explained by X (and, 
of course, vice versa since the relationship goes both ways).

How about a visual presentation of this sharing variance idea? Okay. In Figure 5.5, 
you’ll find a correlation coefficient, the corresponding coefficient of determination, 
and a diagram that represents how much variance is shared between the two vari-
ables. The larger the shaded area in each diagram (and the more variance the two 
variables share), the more highly the variables are correlated.

• The first diagram in Figure 5.5 shows two circles that do not touch. 
They don’t touch because they do not share anything in common. The 
correlation is zero.

• The second diagram shows two circles that overlap. With a correlation of .5 
(and rxy

2 .25= ), they share about 25% of the variance between them.

• Finally, the third diagram shows two circles placed almost on top of each 
other. With an almost perfect correlation of rxy = .90 (rxy

2 .81= ), they share 
about 81% of the variance between them.
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Chapter 5 ■ Computing Correlation Coefficients  89

FIGURE 5.5   How variables share variance and the resulting 
correlation

Variable X Variable Y

0% shared

25% shared 

81% shared 

Correlation

rxy = .5

rxy = .9

rxy = 0

Coefficient of
Determination

r 
2
  = 0

r 
2
  = .25 or 25%

r 
2  = .81 or 81%xy

xy

xy

As More Ice Cream Is Eaten . . . the  
Crime Rate Goes Up (or Association vs. Causality)

Now here’s the really important thing to be careful about when computing, read-
ing about, or interpreting correlation coefficients.

Imagine this. In a small midwestern town, a phenomenon occurred that defied 
any logic. The local police chief observed that as ice cream consumption increased, 
crime rates tended to increase as well. Quite simply, if you measured both, you 
would find the relationship was direct, meaning that as people eat more ice cream, 
the crime rate increases. And as you might expect, as they eat less ice cream, the 
crime rate goes down. The police chief was baffled until he recalled the Stats 1 class 
he took in college and still fondly remembered. (He probably also pulled out his 
copy of this book that he still owned. In fact, it was likely one of three copies he 
had purchased to make sure he always had one handy.)

He wondered how this could be turned into an aha! “Very easily,” he thought. 
The two variables must share something or have something in common with one 
another. Remember that it must be something that relates to both level of ice cream 
consumption and level of crime rate. Can you guess what that is?

The outside temperature is what they both have in common. When it gets warm 
outside, such as in the summertime, more crimes are committed (it stays light 
longer, people leave the windows open, bad guys and girls are out more, etc.). And 
because it is warmer, people enjoy the ancient treat and art of eating ice cream. 
Conversely, during the long and dark winter months, less ice cream is consumed 
and fewer crimes are committed as well.
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90  Part II ■ Σigma Freud and Descriptive Statistics

Joe, though, recently elected as a city commissioner, learns about these findings 
and has a great idea, or at least one that he thinks his constituents will love. (Keep 
in mind, he skipped the statistics offering in college.) Why not just limit the con-
sumption of ice cream in the summer months to reduce the crime rate? Sounds 
good, right? Well, on closer inspection, it really makes no sense at all.

That’s because of the simple principle that correlations express the association that 
exists between two or more variables; they have nothing to do with causality. In 
other words, just because level of ice cream consumption and crime rate increase 
together (and decrease together as well) does not mean that a change in one results 
in a change in the other.

For example, if we took all the ice cream out of all the stores in town and no more 
was available, do you think the crime rate would decrease? Of course not, and 
it’s preposterous to think so. But strangely enough, that’s often how associations 
are interpreted—as being causal in nature—and complex issues in the social and 
behavioral sciences are reduced to trivialities because of this misunderstanding. 
Did long hair and hippiedom have anything to do with the Vietnam conflict? Of 
course not. Does the rise in the number of crimes committed have anything to do 
with more efficient and safer cars? Of course not. But they all happen at the same 
time, creating the illusion of being associated.

PEOPLE WHO LOVED STATISTICS

Katharine Coman (1857–1915) was such a kind 
and caring researcher that a famous book of 
poetry and prose was written about her after 
her death from cancer at the age of 57. Her love 
for statistics was demonstrated in her belief 
that the study of economics could solve social 
problems and urged her college, Wellesley, 
to let her teach economics and statistics. 
She may have been the first woman statis-
tics professor. Coman was a prominent social 
activist in her life and in her writings, and she 
frequently cited industrial and economic sta-
tistics to support her positions, especially as 
they related to the labor movement and the 
role of African American workers. The artis-
tic biography written about Professor Coman 
was Yellow Clover (1922), a tribute to her by 
her longtime companion (and coauthor of 
the song “America the Beautiful”), Katherine  
Lee Bates.
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Chapter 5 ■ Computing Correlation Coefficients  91

Using SPSS to Compute a Correlation Coefficient

Let’s use SPSS to compute a correlation coefficient. The data set we are using is an 
SPSS data file named Chapter 5 Data Set 1.

There are two variables in this data set:

Variable Definition

Income Annual income in dollars

Education Level of education measured in years

To compute the Pearson correlation coefficient, follow these steps:

1. Open the file named Chapter 5 Data Set 1.

2. Click Analyze → Correlate → Bivariate, and you will see the Bivariate 
Correlations dialog box, as shown in Figure 5.6.

3. Double-click on the variable named Income to move it to the Variables: 
box.

4. Double-click on the variable named Education to move it to the 
Variables: box. You can also hold down the Ctrl key to select more than 
one variable at a time and then use the “move” arrow in the center of 
the dialog box to move them both.

5. Click OK.

FIGURE 5.6  The Bivariate Correlations dialog box
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92  Part II ■ Σigma Freud and Descriptive Statistics

Understanding the SPSS Output

The output in Figure 5.7 shows the correlation coefficient to be equal to .574. Also 
shown are the sample size, 20, and a measure of the statistical significance of the 
correlation coefficient (we’ll cover the topic of statistical significance in Chapter 9).

FIGURE 5.7   SPSS output for the computation of the correlation 
coefficient

The SPSS output shows that the two variables are related to one another and that 
as level of income increases, so does level of education. Similarly, as level of income 
decreases, so does level of education. The fact that the correlation is significant 
means that this relationship is not due to chance.

As for the meaningfulness of the relationship, the coefficient of determination is 
.5742 or .329 or .33, meaning that 33% of the variance in one variable is accounted 
for by the other. According to our eyeball strategy, this is a relatively weak relation-
ship. Once again, remember that low levels of income do not cause low levels of 
education, nor does not finishing high school mean that someone is destined to a 
life of low income. That’s causality, not association, and correlations speak only to 
association.

Creating a Scatterplot (or Scattergram or Whatever)

You can draw a scatterplot by hand, but it’s good to know how to have SPSS 
do it for you as well. Let’s take the same data that we just used to produce the 
correlation matrix in Figure 5.7 and use it to create a scatterplot. Be sure that 
the data set named Chapter 5 Data Set 1 is on your screen.

1. Click Graphs → Chart Builder → Scatter/Dot, and you will see the Chart 
Builder dialog box shown in Figure 5.8.

2. Double-click on the first Scatter/Dot example.

3. Highlight and drag the variable named Income to the y-axis.
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4. Highlight and drag the variable named Education to the x-axis.

5. Click OK, and you’ll have a very nice, simple, and easy-to-understand 
scatterplot like the one you see in Figure 5.9.

FIGURE 5.8  The Chart Builder dialog box

FIGURE 5.9  A simple scatterplot
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94  Part II ■ Σigma Freud and Descriptive Statistics

OTHER COOL CORRELATIONS
There are different ways in which variables can be assessed. For example,  
nominal-level variables are categorical in nature; examples are race (e.g., black or 
white) and political affiliation (e.g., Independent or Republican). Or, if you are 
measuring income and age, you are measuring interval-level variables, because the 
underlying continuum on which they are based has equally appearing intervals. As 
you continue your studies, you’re likely to come across correlations between data 
that occur at different levels of measurement. And to compute these correlations, 
you need some specialized techniques. Table 5.4 summarizes what these different 
techniques are and how they differ from one another.

TABLE 5.4  Correlation Coefficient Shopping, Anyone?

Level of Measurement and Examples

Variable X Variable Y
Type of 
Correlation

Correlation Being 
Computed

Nominal (voting 
preference, such as 
Republican or Democrat)

Nominal (biological 
sex, such as male 
or female)

Phi coefficient The correlation between 
voting preference and sex

Nominal (social class, 
such as high, medium, or 
low)

Ordinal (rank 
in high school 
graduating class)

Rank biserial 
coefficient

The correlation between 
social class and rank in high 
school

Nominal (family 
configuration, such as 
two-parent or single-
parent)

Interval (grade 
point average)

Point biserial The correlation between 
family configuration and 
grade point average

Ordinal (height converted 
to rank)

Ordinal (weight 
converted to rank)

Spearman rank 
coefficient

The correlation between 
height and weight

Interval (number of 
problems solved)

Interval (age in 
years)

Pearson correlation 
coefficient

The correlation between 
number of problems solved 
and age in years

PARTING WAYS: A BIT ABOUT  
PARTIAL CORRELATION
Okay, now you have the basics about simple correlation, but there are many other 
correlational techniques that are specialized tools to use when exploring relation-
ships between variables.

A common “extra” tool is called partial correlation, where the relationship 
between two variables is explored, but the impact of a third variable is removed 
from the relationship between the two. Sometimes that third variable is called a 
mediating or a confounding variable.
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Chapter 5 ■ Computing Correlation Coefficients  95

For example, let’s say that we are exploring the relationship between level of depres-
sion and incidence of chronic disease and we find that, on the whole, the relationship 
is positive. In other words, the more chronic disease is evident, the higher the like-
lihood that depression is present as well (and of course vice versa). Now remember, 
the relationship might not be causal, one variable might not “cause” the other, and 
the presence of one does not mean that the other will be present as well. The posi-
tive correlation is just an assessment of an association between these two variables, 
the key idea being that they share some variance in common.

And that’s exactly the point—it’s the other variables they share in common that we 
want to control and, in some cases, remove from the relationship so we can focus 
on the key relationship we are interested in.

For example, how about level of family support? Nutritional habits? Severity or 
length of illness? These and many more variables can all explain the relationship 
between these two variables, or they may at least account for some of the variance.

And think back a bit. That’s exactly the same argument we made when focusing 
on the relationship between the consumption of ice cream and the level of crime. 
Once outside temperature (the mediating or confounding variable) is removed 
from the equation . . . boom! The relationship between the consumption of ice 
cream and the crime level plummets. Let’s take a look.

Here are some data on the consumption of ice cream and the crime rate for 10 cities.

Consumption of Ice 
Cream Crime Rate

Consumption of ice 
cream

1.00 .743

Crime rate 1.00

So, the correlation between these two variables, consumption of ice cream and 
crime rate, is .743. This is a pretty healthy relationship, accounting for about 50% 
of the variance between the two variables (.7432 = .55 or 55%).

Now, we’ll add a third variable, average outside temperature. Here are the Pearson 
correlation coefficients for the set of three variables.

Consumption of Ice 
Cream Crime Rate

Average Outside 
Temperature

Consumption of ice 
cream

1.00 .743 .704

Crime rate 1.00 .655

Average outside 
temperature

1.00
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96  Part II ■ Σigma Freud and Descriptive Statistics

As you can see by these values, there’s a fairly strong relationship between ice cream 
consumption and outside temperature and between crime rate and outside tem-
perature. We’re interested in the question, “What’s the correlation between ice 
cream consumption and crime rate with the effects of outside temperature removed 
or partialed out?”

That’s what partial correlation does. It looks at the relationship between two vari-
ables (in this case, consumption of ice cream and crime rate) as it removes the 
influence of a third (in this case, outside temperature).

A third variable that explains the relationship between two variables can be 
a mediating variable or a confounding variable. Those are different types of 
variables with different definitions, though, and are easy to confuse. In our  
example with correlations, a confounding variable is something like tempera-
ture that affects both our variables of interest and explains the correlation 
between them. A mediating variable is a variable that comes between our two 
variables of interest and explains the apparent relationship. For example, if 
A is correlated with B and B is correlated with C, A and C would seem to be 
related but only because they are both related to B. B is a mediating variable. 
Perhaps A affects B and B affects C, so A and C are correlated.

Using SPSS to Compute Partial Correlations

Let’s use some data and SPSS to illustrate the computation of a partial correlation. 
Here are the raw data.

City
Ice Cream 

Consumption Crime Rate
Average Outside 

Temperature

 1 3.4 62 88

 2 5.4 98 89

 3 6.7 76 65

 4 2.3 45 44

 5 5.3 94 89

 6 4.4 88 62

 7 5.1 90 91

 8 2.1 68 33

 9 3.2 76 46

10 2.2 35 41

1. Enter the data we are using into SPSS.

2. Click Analyze → Correlate → Partial and you will see the Partial 
Correlations dialog box, as shown in Figure 5.10.
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Chapter 5 ■ Computing Correlation Coefficients  97

3. Move Ice_Cream and Crime_Rate to the Variables: box by dragging them 
or double-clicking on each one.

4. Move the variable named Outside_Temp to the Controlling for: box.

5. Click OK and you will see the SPSS output as shown in Figure 5.11.

FIGURE 5.10  The Partial Correlations dialog box

FIGURE 5.11  The completed partial correlation analysis

Understanding the SPSS Output

As you can see in Figure 5.11, the correlation between ice cream consumption (Ice_
Cream) and crime rate (Crime_Rate) with the influence or moderation of outside 
temperature (Outside_Temp) removed is .525. This is less than the simple Pearson 
correlation between ice cream consumption and crime rate (which is .743), which 
does not consider the influence of outside temperature. What seemed to explain 
55% of the variance (and was what we call “significant at the .05 level”), with the 
removal of Outside_Temp as a moderating variable, now explains .5252 = 0.28 = 
28% of the variance (and the relationship is no longer significant).
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98  Part II ■ Σigma Freud and Descriptive Statistics

Our conclusion? Outside temperature accounted for enough of the shared variance 
between the consumption of ice cream and the crime rate for us to conclude that 
the two-variable relationship was significant. But, with the removal of the moder-
ating or confounding variable outside temperature, the relationship was no longer 
significant. And we don’t need to stop selling ice cream to try to reduce crime.

REAL-WORLD STATS

This is a fun one and consistent with the 
increasing interest in using statistics in various 
sports in various ways, a discipline informally 
named sabermetrics. The term was coined by 
Bill James (and his approach is represented in 
the movie and book Moneyball).

Stephen Hall and his colleagues examined the 
link between teams’ payrolls and the compet-
itiveness of those teams (for both professional 
baseball and soccer), and he was one of the first 
to look at this from an empirical perspective. In 
other words, until these data were published, 
most people made decisions based on anec-
dotal evidence rather than quantitative assess-
ments. Hall looked at data on team payrolls in 
American Major League Baseball and English 
soccer between 1980 and 2000, and he used a 
model that allows for the establishment of cau-
sality (and not just association) by looking at the 
time sequence of events to examine the link.

In baseball, payroll and performance both 
increased significantly in the 1990s, but there 
was no evidence that causality runs in the 
direction from payroll to performance. In com-
parison, for English soccer, the researchers 
did show that higher payrolls actually were at 
least one cause of better performance. Pretty 
cool, isn’t it, how association can be explored 
to make real-world decisions?

Want to know more? Go online or to the 
library and find . . .

Hall, S., Szymanski, S., & Zimbalist, 
A. S. (2002). Testing causality between 
team performance and payroll: The 
cases of Major League Baseball and 
English soccer. Journal of Sports 
Economics, 3, 149–168.

Summary

The idea of showing how things are related to one another and what they have in common is a very 
powerful one, and the correlation coefficient is a very useful descriptive statistic (one used in infer-
ence as well, as we will show you later). Keep in mind that correlations express a relationship that 
is associative but not necessarily causal, and you’ll be able to understand how this statistic gives us 
valuable information about relationships between variables and how variables change or remain 
the same in concert with others. Now it’s time to change speeds just a bit and wrap up Part II with a 
focus on reliability and validity. You need to know about these ideas because you’ll be learning how to 
determine what differences in outcomes, such as scores and other variables, represent.
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Time to Practice

 1. Use these data to answer Questions 1a and 1b. These data are saved as Chapter 5 Data Set 2.

a. Compute the Pearson product-moment correlation coefficient by hand and show all your work.

b. Construct a scatterplot for these 10 pairs of values by hand. Based on the scatterplot, would 
you predict the correlation to be direct or indirect? Why?

Number Correct (out 
of a possible 20)

Attitude (out of a 
possible 100)

17 94

13 73

12 59

15 80

16 93

14 85

16 66

16 79

18 77

19 91

 2. Use these data to answer Questions 2a and 2b. These data are saved as Chapter 5 Data Set 3.

Speed (to complete a 
50-yard swim)

Strength (number 
of pounds bench-

pressed)

21.6 135

23.4 213

26.5 243

25.5 167

20.8 120

19.5 134

20.9 209

18.7 176

29.8 156

28.7 177

a. Using either a calculator or a computer, compute the Pearson correlation coefficient.

b. Interpret these data using the general range of very weak to very strong. Also compute the 
coefficient of determination. How does the subjective analysis compare with the value of r2?

(Continued)
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100  Part II ■ Σigma Freud and Descriptive Statistics

 3. Rank the following correlation coefficients on strength of their relationship (list the weakest first).

.71

+.36

−.45

.47

−.62

 4. For the following set of scores, calculate the Pearson correlation coefficient and interpret the 
outcome. These data are saved as Chapter 5 Data Set 4.

Achievement Increase 
Over 12 Months

Classroom Budget 
Increase Over 12 

Months

0.07 0.11

0.03 0.14

0.05 0.13

0.07 0.26

0.02 0.08

0.01 0.03

0.05 0.06

0.04 0.12

0.04 0.11

 5. For the following set of data, by hand, correlate minutes of exercise with grade point average 
(GPA). What do you conclude given your analysis? These data are saved as Chapter 5 Data Set 5.

Exercise GPA

25 3.6

30 4.0

20 3.8

60 3.0

45 3.7

90 3.9

60 3.5

 0 2.8

15 3.0

10 2.5

(Continued)
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 6. Use SPSS to determine the correlation between hours of studying and GPA for these honor 
students. Why is the correlation so low?

Hours of Studying GPA

23 3.95

12 3.90

15 4.00

14 3.76

16 3.97

21 3.89

14 3.66

11 3.91

18 3.80

 9 3.89

 7. The coefficient of determination between two variables is .64. Answer the following questions:

a. What is the Pearson correlation coefficient?

b. How strong is the relationship?

c. How much of the variance in the relationship between these two variables is unaccounted for?

 8. Here is a set of three variables for each of 20 participants in a study on recovery from a head 
injury. Create a simple matrix that shows the correlations between each variable. You can do 
this by hand (and plan on being here for a while) or use SPSS or any other application. These 
data are saved as Chapter 5 Data Set 6.

Age at Injury Level of Treatment
12-Month Treatment 

Score

25 1 78

16 2 66

 8 2 78

23 3 89

31 4 87

19 4 90

15 4 98

31 5 76

21 1 56

(Continued)
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Age at Injury Level of Treatment
12-Month Treatment 

Score

26 1 72

24 5 84

25 5 87

36 4 69

45 4 87

16 4 88

23 1 92

31 2 97

53 2 69

11 3 79

33 2 69

 9. Look at Table 5.4. What type of correlation coefficient would you use to examine the 
relationship between biological sex (defined in this study as having only two categories: male 
or female) and political affiliation? How about family configuration (two-parent or single-
parent) and high school GPA? Explain why you selected the answers you did.

10. When two variables are correlated (such as strength and running speed), they are associated 
with one another. Explain how, even if there is a correlation between the two, one might not 
cause the other.

11. Provide three examples of an association between two variables where a causal relationship 
makes perfect sense conceptually.

12. Why can’t correlations be used as a tool to prove a causal relationship between variables 
rather than just an association?

13. When would you use partial correlation?

Student Study Site

Get the tools you need to sharpen your study skills! Visit edge.sagepub.com/salkindfrey7e to access 
practice quizzes, eFlashcards, original and curated videos, data sets, and more!

(Continued)
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