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SERIES EDITOR’S INTRODUCTION

The statistical sophistication of articles published in major social science
journals has been increasing steadily over time. However, because the math-
ematical knowledge that social science students bring to their graduate statis-
tics training has not always kept pace, the skills needed to fully under-
stand, critique, and replicate these methods may be lacking. A Mathematical
Primer for Social Statistics (2nd ed.) provides the missing foundation for
those who need it and fills in the gaps for those whose training is spotty or
out-of-date.

The Primer’s author, John Fox, is a well-known and respected expert in
statistical methods. The mathematical concepts and skills needed to learn
advanced social statistical methods are thus well-known to him. But perhaps
as importantly, so are the areas of particular weakness among social scien-
tists. The Primer is designed to address these weaknesses very specifically
in order to provide the background social scientists need for the statistical
methods they are likely to use. The scope is similar to that of the math camps
that precede the beginning of PhD programs in economics and some political
science, public policy, and sociology programs.

The Primer (2nd ed.) is organized around bodies of mathematical knowl-
edge central to learning and understanding advanced statistics: the basic
“language” of linear algebra, differential and integral calculus, probability
theory, common probability distributions, and statistical estimation and in-
ference. The volume concludes showing the application of mathematical
concepts and operations to the familiar case, linear least-squares regres-
sion. Compared to the first edition of the Primer, published a decade ago,
the second edition gives much more attention to visualization. It also cov-
ers some new topics—for example, an introduction to Markov-chain Monte
Carlo methods. Also included is a companion website with materials that
will enable readers to use the R statistical computing environment to repro-
duce and expand on computations presented in the volume.

The Primer would make an excellent text to accompany a math camp or a
course designed to provide foundational mathematics needed to understand
advanced statistics. It would also serve as a valuable reference for those who
have completed their formal training but are still interested in learning new
statistical methods. For example, those preparing to learn factor analysis or
principal components analysis might benefit from a review of eigenvalues
and eigenvectors (Chapter 2). Those about to dive into generalized linear
models might usefully review the exponential family of distributions (Chap-

xi
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xii SERIES EDITOR’S INTRODUCTION

ter 5). In the process of working through an advanced text, readers might
consult the Primer when they encounter a topic for which they need a quick
refresher—for example, a Kronecker product (Chapter 1), a Lagrange mul-
tiplier (Chapter 3), or the likelihood ratio test (Chapter 6). A detailed Table
of Contents as well as an Index help readers navigate the topics covered in
the Primer, large and small.

Generations have learned from Professor Fox’s many texts. In addition
to the Primer, there are several others in the QASS Series: Multiple and
Generalized Nonparametric Regression (Book 131); Nonparametric Simple
Regression: Smoothing Scatterplots (Book 130); and Regression Diagnos-
tics, 2nd ed. (Book 79). The Primer is thus in excellent company and will
serve the needs of generations to come.

—Barbara Entwisle
Series Editor
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PREFACE

Statistics is not mathematics. Math is central to the development, commu-
nication, and understanding of statistics, but applied statistics—the kind of
statistics of most interest to social scientists—is not about proving abstract
theorems but about analyzing data.

Typical introductory statistics courses taught to social science students
use only very basic mathematics—arithmetic, simple formulas, and the in-
terpretation of graphs. There are good reasons for this: Most social sci-
ence students have weak backgrounds in mathematics. Even more important,
however, the fundamental goals of a basic statistics course (or at least what
in my opinion should be the fundamental goals) are to convey the role of
statistical methods in collecting and summarizing data along with the essen-
tial ideas of statistical inference. Accomplishing these goals is sufficiently
challenging without drowning the big ideas in a sea of equations. I believe,
incidentally, that this is the case even for students who have strong founda-
tions in mathematics.

Once beyond the introductory level, and perhaps a second course in ap-
plied regression analysis, the situation changes: Insufficient grounding in
mathematics makes it difficult to proceed in applied statistics. The good
news, however, is that a relatively modest background in intermediate-level
mathematics suffices for the study of a great deal of statistics. Often, all that
is needed is an understanding of basic mathematical ideas, familiarity with
some important facts, and an ability to read and perhaps manipulate equa-
tions. This book aims to provide that basic background.

The book originated in online appendices that I wrote for the second edi-
tion of my applied regression text (Fox, 2008, which is now in a third edi-
tion, Fox, 2016). I felt initially that some readers might prefer a printed and
bound copy of the appendices to downloading them from the internet. It then
occurred to me that the appendices might prove more generally useful, and
ultimately I augmented them with material that was not directly relevant to
my applied regression text but that is important to other statistical methods
that are widely employed in the social sciences. The book, therefore, in-
cludes material not in the original appendices, and this second edition of the
book includes material not in the first edition (see page xvii below).

xv

Copyright ©2021 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



xvi PREFACE

The book covers three areas of mathematics that are of central importance
to applied statistics:

• Chapters 1 and 2 takes up matrices, linear algebra, and vector geom-
etry. Matrices, which are rectangular arrays of numbers, are a natural
representation of most statistical data, and consequently, the
arithmetic and algebra of matrices is the natural language for devel-
oping most statistical methods. Beyond the basic level, matrices are
omnipresent in statistics, and therefore, some acquaintance with ma-
trices is necessary for reading statistical material. The closely related
areas of linear algebra and its visual representation, vector geometry,
are also central to the development and understanding of many statis-
tical methods.

• Chapter 3 introduces the basic ideas of differential and integral calcu-
lus. Here, the emphasis is on fundamental concepts and simple meth-
ods. Differential calculus is frequently used in statistics for optimiza-
tion problems—that is, minimization and maximization: Think, for
example, of the method of least squares or of maximum-likelihood es-
timation. Integral calculus figures prominently in probability theory,
which is fundamentally tied to statistical modeling and statistical in-
ference. Although the presentation of calculus in this book is elemen-
tary, I do cover topics important to statistics, such as multivariable
and matrix calculus, that, while not fundamentally difficult, are often
deferred to advanced treatments of the subject.

• Chapters 4, 5, and 6 develop probability theory, describe probability
distributions important to statistics, and introduce statistical theory,
including asymptotic distribution theory, the properties of estimators,
the centrally important method of maximum likelihood, and the ba-
sics of Bayesian statistical inference. The ideas in these chapters fea-
ture prominently in applied statistics, and indeed, the three chapters
represent a kind of “crash course” in some of the fundamentals of
mathematical statistics.

• Chapter 7 illustrates the use of the preceding mathematics in applied
statistics by briefly developing the seminal statistical method of linear
least-squares regression and deriving some of its properties.

It is, all told, remarkable how far one can get in applied statistics with a
modicum of mathematics—the modicum that this book supplies. This is the
resource that I wish I had when I started to study statistics seriously. I hope
that it will prove helpful to you, both on initial reading and as a reference.
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PREFACE xvii

What’s New in the Second Edition

Although the material has been reorganized, the contents of the first edi-
tion of the book are included in the second edition, with small additions
and modifications. There are as well a few more substantial additions to the
book:

• Chapter 2 includes new material on visualizing quadratic forms using
ellipses and on the QR matrix decomposition.

• Chapter 3 on calculus includes a new introduction to numerical
optimization.

• Ellipses are also used in Chapter 5 to represent contours of the bivariate-
normal distribution and in Chapter 7 to visualize properties of simple
and multiple least-squares regression.

• Chapter 6 includes a new introduction to Markov-chain Monte Carlo
(MCMC) methods for approximating probability distributions, meth-
ods that are central to modern Bayesian statistics.

• The QR and singular-value decompositions are applied in Chapter 7 to
the numerically stable computation of least-squares regression
coefficients.

Notation

Specific notation is introduced at various points in the text. Throughout the
text, I adhere to the following general conventions, with few exceptions.
[Examples are shown in brackets.]

• Known scalar constants (i.e., individual numbers, including subscripts)
are represented by lowercase italic letters [a,b,xi].

• Observable scalar random variables are represented by uppercase italic
letters [X , Yi]. Where it is necessary to make the distinction, specific
values of random variables are represented as constants [x, yi].

• Scalar parameters are represented by lowercase Greek letters [α , β ,
γ2]. (See the Greek alphabet in Table 1.) Their estimators are generally
denoted by “corresponding” italic characters [A, B, C2], or by Greek
letters with “hats” [α̂ , β̂ , γ̂2].
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xviii PREFACE

Table 1 The Greek Alphabet With Roman “Equivalents”

Greek Letter Roman Equivalent
Lowercase Uppercase Phonetic Other

α A alpha a
β B beta b
γ Γ gamma g, n c
δ ∆ delta d
ε E epsilon e
ζ Z zeta z
η H eta e
θ Θ theta th
ι I iota i
κ K kappa k
λ Λ lambda l
µ M mu m
ν N nu n
ξ Ξ xi x
o O omicron o
π Π pi p
ρ P rho r
σ Σ sigma s
τ T tau t
υ ϒ upsilon y, u
φ Φ phi ph
χ X chi ch x
ψ Ψ psi ps
ω Ω omega o w

• Unobservable scalar random variables are also represented by lower-
case Greek letters [εi].

• Vectors (one-dimensional “lists” of numbers) and matrices (rectan-
gular tables of numbers) are represented by boldface characters—
lowercase for vectors [x1, βββ ], uppercase for matrices [X, ΣΣΣ]. In a
statistical context, Roman letters are used for constants and observ-
able random variables [y, x1, X], and Greek letters are used for pa-
rameters and unobservable random variables [βββ , ΣΣΣ, εεε]. It is occasion-
ally convenient to show the order (number of rows and columns) of
a vector or matrix below the matrix [ εεε

(n×1)
, X
(n×k+1)

]. The order of an
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PREFACE xix

identity matrix is given by a subscript [In]. A zero matrix or vector
is represented by a boldface zero [0]; a vector of 1s is represented by
a boldface 1, possibly subscripted with its number of elements [1n].
The transpose of a matrix is denoted by a prime [X′], and vectors are
column vectors (i.e., one-column matrices), unless they are explicitly
transposed [column: x; row: x′].

• The symbol ≡ can be read as “is defined by,” or “is equal to by defi-
nition” [X ≡ (∑Xi)/n].

• The symbol ≈ means “is approximately equal to” [π ≈ 3.14159].

• The symbol ∝ means “is proportional to” [p(α|D) ∝ L(α)p(α)].

• The symbol ∼ means “is distributed as” [εi ∼ N(0,σ2)].

• The operator E( ) denotes the expectation of a scalar, vector, or matrix
random variable [E(Yi), E(εεε), E(X)].

• The operator V ( ) denotes the variance of a scalar random variable
or the variance–covariance matrix of a vector random variable [V (εi),
V (b)].

• Estimated variances or variance–covariance matrices are indicated by
a circumflex (“hat”) placed over the variance operator [V̂ (εi), V̂ (b)].

• The operator C( ) gives the covariance of two scalar random variables
or the covariance matrix of two vector random variables [C(X , Y ),
C(x,y)].

• The operators E ( ) and V ( ) denote asymptotic expectation and vari-
ance, respectively. Their usage is similar to that of E( ) and V ( )

[E (B), E (b), V (β̂ββ ), V̂ (b)].

• Probability limits are specified by plim [plim b = β ].

• Standard mathematical functions are shown in lowercase [cosW or
cos(W ), trace(A)]. The base of the log function is always specified
explicitly [loge L, log10 X], unless it is irrelevant [log1 = 0]. The ex-
ponential function exp(x) represents ex.

• The summation sign ∑ is used to denote continued addition [∑n
i=1 Xi≡

X1 +X2 + · · ·+Xn]. Often, the range of the index is suppressed if it is
clear from the context [∑i Xi], and the index may be suppressed as
well [∑Xi]. The symbol ∏ similarly indicates continued multiplica-
tion [∏n

i=1 p(Yi)≡ p(Y1)× p(Y2)×·· ·× p(Yn)].
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xx PREFACE

• The symbol ∂ denotes the partial derivative [∂ f (x1,x2)/∂x1].

• To avoid awkward and repetitive phrasing in the statement of defini-
tions and results, the words “if” and “when” are understood to mean
“if and only if,” unless explicitly indicated to the contrary. Terms are
generally set in italics when they are introduced. [“Two vectors are
orthogonal if their inner product is zero.”]

Recommended Reading

The subjects addressed in this book—linear algebra, calculus, probability,
and statistical theory—are larger than can be covered in depth in a 200-page
book. It is my hope that the book will not only provide a basic background in
these topics for students of social statistics, but also the foundation required
to pursue the topics in greater depth, for example in the following sources.

There is a plethora of books on linear algebra and matrices. Most pre-
sentations develop the fundamental properties of vector spaces, but often,
unfortunately, without explicit visual representation.

• Several matrix texts, including Healy (1986), Graybill (1983), Searle
(1982), and Green and Carroll (1976), focus specifically on statisti-
cal applications. The last of these sources has a strongly geometric
orientation.

• Davis (1965), who presents a particularly lucid and simple treatment
of matrix algebra, includes some material on vector geometry (limited,
however, to two dimensions).

• Namboodiri (1984) provides a compact introduction to matrix algebra
(but not to vector geometry).

• Books on statistical computing, such as the classic text by Kennedy
and Gentle (1980) and Monahan (2001), typically describe the imple-
mentation of matrix and linear-algebra computations on digital com-
puters. Fieller (2016) presents a treatment of numerical matrix algebra
that focuses on the R statistical computing environment.

There is an almost incredible profusion of introductory calculus texts, and
I cannot claim to have read more than a few of them.

• Of these, my favorite brief treatment is Thompson and Gardner (1998),
which was first published in the early 20th century, and which deals
almost exclusively with functions of one independent variable.
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PREFACE xxi

• For a much more detailed introduction, including to multivariable cal-
culus, see Stewart (2016), a very popular text that has appeared in
many versions and editions.

Most more advanced treatments of calculus are either highly abstract or
focus on applications in the physical sciences.

• For an extensive treatment of calculus of several variables with a so-
cial science (specifically, economic) orientation, see Binmore and
Davies (2001).

• Nash (2014) provides an in-depth treatment of numerical optimization
methods oriented toward the R statistical computing environment.

Almost any introductory text in mathematical statistics, and many econo-
metric texts, cover probability theory, statistical distributions, and the foun-
dations of statistical inference more formally and in greater detail than I do
in this book, and there are also books that focus on each of these subjects.

• The text by Cox and Hinkley (1974) is a standard, if relatively diffi-
cult, treatment of most of the topics in Chapters 4, 5, and 6.

• A compact summary appears in Zellner (1983).

• Wonnacott and Wonnacott (1990) present insightful treatments of many
of these topics at a much lower level of mathematical sophistication;
I particularly recommend this source if you found the simpler parts of
Chapter 4 too terse.

• A good, relatively accessible, discussion of asymptotic distribution
theory appears in Theil (1971, Chapter 8).

• A general presentation of Wald, likelihood-ratio, and score tests can
be found in Engle (1984).

• Lancaster (2004), Gelman and Hill (2007), and McElreath (2020) of-
fer accessible introductions to Bayesian methods, while Gelman, Car-
lin, Stern, and Rubin (2013) present a more extensive treatment of the
subject.

• Clear explanations of the Gibbs sampler and Hamiltonian Monte Carlo
may be found in Casella and George (1992) and Neal (2011),
respectively.

Copyright ©2021 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



xxii PREFACE

Website

I have prepared a website for the book, accessible at https://tinyurl.com/
Math-Primer, including errata (if any, as they come to my attention), and
a variety of materials focussed on computations using the R statistical com-
puting environment. For example, I use the matlib package for R to illus-
trate matrix and linear-algebra computations employed in the book, such as
step-by-step demonstrations of Gaussian elimination and the construction of
vector diagrams.
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CHAPTER 1. MATRICES, LINEAR ALGEBRA, AND
VECTOR GEOMETRY: THE BASICS

Matrices provide a natural notation for much of statistics; the algebra of lin-
ear statistical models is linear algebra; and vector geometry is a powerful
conceptual tool for understanding linear algebra and for visualizing many
aspects of linear models. The purpose of this chapter is to present essential
concepts and results concerning matrices, linear algebra, and vector geome-
try. The focus is on topics that are employed widely in social statistics, and
the style of presentation is informal rather than mathematically rigorous: At
points, results are stated without proof; at other points, proofs are outlined;
often, results are justified intuitively. Readers interested in pursuing linear
algebra at greater depth might profitably make reference to one of the many
available texts on the subject, each of which develops in greater detail most
of the topics presented here (see, e.g., the recommended readings in the Pref-
ace, page xx).

The first section of the chapter develops elementary matrix algebra. The
second and third sections introduce vector geometry and vector spaces. The
final section discusses the related topics of matrix rank and the solution of
linear simultaneous equations.

1.1 Matrices

1.1.1 Introducing the Actors: Definitions

A matrix is a rectangular table of numbers or of numerical variables;1 for
example,

X
(4×3)

=


1 −2 3
4 −5 −6
7 8 9
0 0 10

 (1.1)

1In this text, I restrict consideration to matrices composed of real numbers, but matrices can
also have complex numbers as elements—that is, numbers of the form a+bi, where i≡

√
−1.

Matrices with complex elements have few applications in statistics (e.g., in time-series analy-
sis), although they are prominent in other fields, such as physics.

1
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2 CHAPTER 1. MATRICES & LINEAR ALGEBRA

or, more generally,

A
(m×n)

=


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

 (1.2)

A matrix such as this with m rows and n columns is said to be of order m
by n, written as (m×n). For clarity, I at times indicate the order of a matrix
below the matrix, as in Equations 1.1 and 1.2. Each entry or element of a
matrix may be subscripted by its row and column indices: ai j is the entry
in the ith row and jth column of the matrix A. Individual numbers, such
as the entries of a matrix, are termed scalars. Sometimes, for compactness,
I specify a matrix by enclosing its typical element in braces; for example,

A
(m×n)

= {ai j} is equivalent to Equation 1.2.

A matrix consisting of one column is called a column vector; for example,

a
(m×1)

=


a1
a2
...

am


Likewise, a matrix consisting of one row is called a row vector,

b′ = [b1,b2, · · ·,bn]

In specifying a row vector, I typically place commas between its elements
for clarity.

The transpose of a matrix A, denoted A′, is formed from A so that the ith
row of A′ consists of the elements of the ith column of A;2 thus (using the

2Although in this book I’ll consistently use a prime, as in A′, to denote the matrix transpose,
it’s also common to use a superscript T , as in AT .
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1.1. MATRICES 3

matrices in Equations 1.1 and 1.2),

X′
(3×4)

=

 1 4 7 0
−2 −5 8 0

3 −6 9 10



A′
(n×m)

=


a11 a21 · · · am1
a12 a22 · · · am2

...
...

...
a1n a2n · · · amn


The transpose of the transpose is the original matrix: (A′)′ = A. I adopt the
common convention that a vector is a column vector (such as a above) unless
it is explicitly transposed (such as b′).

A square matrix of order n, as the term implies, has n rows and n columns.
The entries aii (i.e., a11,a22, . . .,ann) of a square matrix A comprise the main
diagonal of the matrix. The sum of the diagonal elements is the trace of the
matrix:

trace(A)≡
n

∑
i=1

aii

For example, the square matrix

B
(3×3)

=

 −5 1 3
2 2 6
7 3 −4


has diagonal elements, −5,2, and −4, and trace(B) = ∑

3
i=1 bii = −5+ 2−

4 =−7.
A square matrix A is symmetric if A = A′, that is, when ai j = a ji for all i

and j. Consequently, the matrix B (above) is not symmetric, while the matrix

C =

 −5 1 3
1 2 6
3 6 −4


is symmetric. Many matrices that appear in statistical applications are
symmetric—for example, correlation matrices, covariance matrices, and ma-
trices of sums of squares and cross products.

An upper-triangular matrix is a square matrix with 0s below its main
diagonal:

U
(n×n)

=


u11 u12 · · · u1n
0 u22 · · · u2n
...

...
. . .

...
0 0 · · · unn
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4 CHAPTER 1. MATRICES & LINEAR ALGEBRA

To be clear, some of the elements on and above the main diagonal of U may
be 0, but all of the elements below the diagonal are 0. Similarly, a lower-
triangular matrix is a square matrix of the form

L
(n×n)

=


l11 0 · · · 0
l21 l22 · · · 0
...

...
. . .

...
ln1 ln2 · · · lnn


A square matrix is diagonal if all entries except those on its main diagonal

are 0; thus,

D
(n×n)

=


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn


For compactness, I may write D = diag(d1,d2, . . .,dn). A scalar matrix is a
diagonal matrix all of whose diagonal entries are equal: S = diag(s,s, . . .,s).
An especially important family of scalar matrices are the identity matrices I,
which have 1s on the main diagonal:

I
(n×n)

=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


I write In for I

(n×n)
.

Two other special matrices are the family of zero matrices, 0, all of whose
entries are 0, and the 1 vectors, all of whose entries are 1. I write 1n for the
column vector of 1s with n entries; for example, 14 = [1,1,1,1]′. Although
the identity matrices, the zero matrices, and the 1 vectors are families of
matrices, it is often convenient to refer to these matrices in the singular, for
example, to “the identity matrix.’

A partitioned matrix is a matrix whose elements are organized into sub-
matrices; for example,

A
(4×3)

=


a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

=

 A11
(3×2)

A12
(3×1)

A21
(1×2)

A22
(1×1)
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1.1. MATRICES 5

where the submatrix

A11 ≡

 a11 a21
a21 a22
a31 a32


and A12, A21, and A22 are similarly defined. When there is no possibility
of confusion, I omit the lines separating the submatrices. If a matrix is par-
titioned vertically but not horizontally, then I separate its submatrices by

commas; for example, C
(m×n+p)

=

[
C1

(m×n)
, C2
(m×p)

]
.

1.1.2 Simple Matrix Arithmetic

Two matrices are equal if they are of the same order and all corresponding
entries are equal (a definition used implicitly in the preceding section).

Two matrices may be added only if they are of the same order; then their
sum is formed by adding corresponding elements. Thus, if A and B are of
order (m×n), then C = A+B is also of order (m×n), with ci j = ai j +bi j.
Likewise, if D = A−B, then D is of order (m×n), with di j = ai j−bi j. The
negative of a matrix A, that is, E = −A, is of the same order as A, with
elements ei j =−ai j. For example, for matrices

A
(2×3)

=

[
1 2 3
4 5 6

]
and

B
(2×3)

=

[
−5 1 2

3 0 −4

]
we have

C
(2×3)

= A+B =

[
−4 3 5

7 5 2

]

D
(2×3)

= A−B =

[
6 1 1
1 5 10

]

E
(2×3)

=−B =

[
5 −1 −2
−3 0 4

]
Because they are element-wise operations, matrix addition, subtraction,

and negation follow essentially the same rules as the corresponding scalar
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6 CHAPTER 1. MATRICES & LINEAR ALGEBRA

arithmetic operations; in particular,

A+B = B+A (matrix addition is commutative)
A+(B+C) = (A+B)+C (matrix addition is associative)

A−B = A+(−B) =−(B−A)

A−A = 0
A+0 = A
−(−A) = A
(A+B)′ = A′+B′

The product of a scalar c and an (m× n) matrix A is an (m× n) matrix
B = cA in which bi j = cai j. Continuing the preceding examples:

F
(2×3)

= 3×B =

[
−15 3 6

9 0 −12

]
The product of a scalar and a matrix obeys the following rules:

cA = Ac (commutative)
A(b+ c) = Ab+Ac (distributes over scalar addition)
c(A+B) = cA+ cB (distributes over matrix addition)

0A = 0
1A = A

(−1)A =−A

where b,c,0,1, and −1 are scalars, and A, B, and 0 are matrices of the same
order.

The inner product (or dot product) of two vectors (each with n entries),
say a′

(1×n)
and b

(n×1)
, denoted a′ ·b, is a scalar formed by multiplying corre-

sponding entries of the vectors and summing the resulting products:

a′ ·b =
n

∑
i=1

aibi

For example,

[2,0,1,3] ·


−1

6
0
9

= 2(−1)+0(6)+1(0)+3(9) = 25
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1.1. MATRICES 7

Although this example is for the inner product of a row vector with a column
vector, both vectors may be row vectors or both column vectors, as long as
the two vectors have the same number of elements.

Two matrices A and B are conformable for multiplication in the order
given (i.e., AB) if the number of columns of the left-hand factor (A) is equal
to the number of rows of the right-hand factor (B). Thus A and B are con-
formable for multiplication if A is of order (m×n) and B is of order (n× p),
where m and p are unconstrained. For example,[

1 2 3
4 5 6

]
(2×3)

 1 0 0
0 1 0
0 0 1


(3×3)

(1.3)

are conformable for multiplication but 1 0 0
0 1 0
0 0 1


(3×3)

[
1 2 3
4 5 6

]
(2×3)

(1.4)

are not.
Let C = AB be the matrix product; and let a′i represent the ith row of A

and bj represent the jth column of B. Then C is a matrix of order (m× p) in
which

ci j = a′i ·bj=
n

∑
k=1

aikbk j

Here are some examples: =⇒
1 2 3
4 5 6


(2×3)

 1 0 0
⇓ 0 1 0

0 0 1


(3×3)

=

[
1(1)+2(0)+3(0), 1(0)+2(1)+3(0), 1(0)+2(0)+3(1)
4(1)+5(0)+6(0), 4(0)+5(1)+6(0), 4(0)+5(0)+6(1)

]
(2×3)

=

[
1 2 3
4 5 6

]

[β0,β1,β2,β3]
(1×4)


1
x1
x2
x3


(4×1)

= [β0 +β1x1 +β2x2 +β3x3]
(1×1)
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8 CHAPTER 1. MATRICES & LINEAR ALGEBRA

[
1 2
3 4

][
0 3
2 1

]
=

[
4 5
8 13

]
(1.5)[

0 3
2 1

][
1 2
3 4

]
=

[
9 12
5 8

]

[
2 0
0 3

][ 1
2 0
0 1

3

]
=

[
1 0
0 1

]
(1.6)

[ 1
2 0
0 1

3

][
2 0
0 3

]
=

[
1 0
0 1

]
In the first of these examples, the arrows indicate how the rows of the left-
hand factor are multiplied into the columns of the right-hand factor.

Matrix multiplication is associative, A(BC) = (AB)C, and distributive
with respect to addition:

(A+B)C = AC+BC
A(B+C) = AB+AC

but it is not in general commutative: If A is (m×n) and B is (n× p) , then the
product AB is defined but BA is defined only if m = p (cf., e.g., the matrices
in 1.3 and 1.4 above). Even so, AB and BA are of different orders (and
hence are not candidates for equality) unless m = p. And even if A and B
are square, AB and BA, though of the same order, are not necessarily equal
(as illustrated in Equation 1.5). If it is the case that AB = BA (as in Equation
1.6), then the matrices A and B are said to commute with one another. A
scalar factor, however, may be moved anywhere within a matrix product:
cAB = AcB = ABc.

The identity and zero matrices play roles with respect to matrix multipli-
cation analogous to those of the numbers 1 and 0 in scalar algebra:

A
(m×n)

In = Im A
(m×n)

= A

A
(m×n)

0
(n×p)

= 0
(m×p)

0
(q×m)

A
(m×n)

= 0
(q×n)

A further property of matrix multiplication, which has no analog in scalar
algebra, is that (AB)′ = B′A′—the transpose of a product is the product of
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1.1. MATRICES 9

the transposes taken in the opposite order, a rule that extends to the product
of several (conformable) matrices:

(AB · · ·F)′ = F′· · ·B′A′

The powers of a square matrix are the products of the matrix with itself.
That is, A2 = AA, A3 = AAA = AA2 = A2A, and so on. If B2 = A, then
we call B a square root of A, which we may write as A1/2. Unlike in scalar
algebra, however, the square root of a matrix is not generally unique. Of
course, even the scalar square root is unique only up to a change in sign: For
example,

√
4 =±2.3 If A2 = A, then A is said to be idempotent. As in scalar

algebra, and by convention, A0 = I (where the identity matrix I is of the
same order as A). The matrix inverse A−1 is discussed later in the chapter
(Section 1.1.3), and is not {1/ai j}.

For purposes of matrix addition, subtraction, and multiplication, the sub-
matrices of partitioned matrices may be treated as if they were elements, as
long as the factors are partitioned conformably. For example, if

A =

 a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35

=

[
A11 A12
A21 A22

]

and

B =

 b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35

=

[
B11 B12
B21 B22

]
then

A+B =

[
A11 +B11 A12 +B12
A21 +B21 A22 +B22

]
Similarly, if

A
(m+n×p+q)

=

 A11
(m×p)

A12
(m×q)

A21
(n×p)

A22
(n×q)


and

B
(p+q×r+s)

=

 B11
(p×r)

B12
(p×s)

B21
(q×r)

B22
(q×s)


3For another kind of matrix square root, see the discussion of the Cholesky decomposition in
Section 2.2.2.
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10 CHAPTER 1. MATRICES & LINEAR ALGEBRA

then

AB
(m+n×r+s)

=

[
A11B11 +A12B21 A11B12 +A12B22
A21B11 +A22B21 A21B12 +A22B22

]

The Sense Behind Matrix Multiplication
The definition of matrix multiplication makes it simple to formulate systems
of scalar equations as a single matrix equation, often providing a useful level
of abstraction. For example, consider the following system of two linear
equations in two unknowns, x1 and x2:

2x1 +5x2 = 4
x1 +3x2 = 5

These equations are linear because each additive term in the equation is ei-
ther a constant (e.g., 4 on the right-hand side of the first equation) or the
product of a constant and a variable (e.g., 2x1 on the left-hand side of the
first equation). Each of the equations 2x1 + 5x2 = 4 and x1 + 3x2 = 5 lit-
erally represents a line in two-dimensional (2D) coordinate space (see the
review of the equations of lines and planes in Section 3.1.2). Writing the
two scalar equations as a matrix equation,[

2 5
1 3

][
x1
x2

]
=

[
4
5

]
A

(2×2)
x

(2×1)
= b

(2×1)

where

A =

[
2 5
1 3

]
x =

[
x1
x2

]
b =

[
4
5

]
The formulation and solution of systems of linear simultaneous equations is
taken up subsequently (Section 1.4.2).
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1.1. MATRICES 11

1.1.3 Matrix Inverses

In scalar algebra, division is essential to the solution of simple equations.
For example,

6x = 12

x =
12
6

= 2

or, equivalently,

1
6
×6x =

1
6
×12

x = 2

where 1
6 = 6−1 is the scalar inverse of 6.

In matrix algebra, there is no direct analog of division, but most square ma-
trices have a matrix inverse. The inverse of a square matrix A is a square ma-
trix of the same order, written A−1, with the property that AA−1 = A−1A =
I.4 If a square matrix has an inverse, then the matrix is termed nonsingular;
a square matrix without an inverse is termed singular.5 If the inverse of a
matrix exists, then it is unique; moreover, if for a square matrix A, AB = I,
then necessarily BA = I, and thus B = A−1.

For example, the inverse of the nonsingular matrix[
2 5
1 3

]
is the matrix [

3 −5
−1 2

]
as we can readily verify:[

2 5
1 3

][
3 −5
−1 2

]
=

[
1 0
0 1

]
X[

3 −5
−1 2

][
2 5
1 3

]
=

[
1 0
0 1

]
X

4As I will explain (Section 1.4.3), it is also possible to define generalized inverses for rectan-
gular matrices and for square matrices that do not have conventional inverses.
5When mathematicians first encountered nonzero matrices without inverses, they found the
existence of such matrices remarkable or “singular.”
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12 CHAPTER 1. MATRICES & LINEAR ALGEBRA

In scalar algebra, only the number 0 has no inverse. It is simple to show
by example that there exist singular nonzero matrices: Let us hypothesize
that B is the inverse of the matrix

A =

[
1 0
0 0

]
But

AB =

[
1 0
0 0

][
b11 b12
b21 b22

]
=

[
b11 b12
0 0

]
6= I2

which contradicts the hypothesis, and A consequently has no inverse.
There are many methods for finding the inverse of a nonsingular square

matrix. I will briefly and informally describe a procedure called Gaussian
elimination (after the great German mathematician, Carl Friedrich Gauss,
1777–1855). Although there are methods that tend to produce more accurate
numerical results when implemented on a digital computer, elimination has
the virtue of relative simplicity, and has applications beyond matrix inversion
(as we will see later in this chapter).

To illustrate the method of elimination, I will employ the matrix

A =

 2 −2 0
1 −1 1
4 4 −4

 (1.7)

Let us begin by adjoining to this matrix an identity matrix; that is, form the
partitioned or augmented matrix

[A,I3] =

 2 −2 0 1 0 0
1 −1 1 0 1 0
4 4 −4 0 0 1


Then let’s attempt to reduce the original matrix to an identity matrix by
applying operations of three sorts:

EI: Multiply each entry in a row of the matrix by a nonzero scalar
constant.

EII: Add a scalar multiple of one row to another, replacing the other
row.

EIII: Exchange two rows of the matrix.

EI, EII, and EIII are called elementary row operations.
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1.1. MATRICES 13

Starting with the first row, and dealing with each row in turn, ensure that
there is a nonzero entry in the diagonal position, employing a row inter-
change for a lower row if necessary. Then divide the row through by its
diagonal element (called the pivot) to obtain an entry of 1 in the diagonal
position. Finally, add multiples of the current row to the other rows so as to
“sweep out” the nonzero elements in the pivot column. For the illustration:

1. Divide Row 1 by 2,  1 −1 0 1
2 0 0

1 −1 1 0 1 0
4 4 −4 0 0 1


2. Subtract the new Row 1 from Row 2, 1 −1 0 1

2 0 0

0 0 1 − 1
2 1 0

4 4 −4 0 0 1


3. Subtract 4 × Row 1 from Row 3, 1 −1 0 1

2 0 0

0 0 1 − 1
2 1 0

0 8 −4 −2 0 1


4. Move to Row 2; there is a 0 entry in Row 2, Column 2, so interchange

Rows 2 and 3,  1 −1 0 1
2 0 0

0 8 −4 −2 0 1

0 0 1 − 1
2 1 0


5. Divide Row 2 by 8, 1 −1 0 1

2 0 0

0 1 − 1
2 − 1

4 0 1
8

0 0 1 − 1
2 1 0


6. Add Row 2 to Row 1, 1 0 − 1

2
1
4 0 1

8

0 1 − 1
2 − 1

4 0 1
8

0 0 1 − 1
2 1 0
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14 CHAPTER 1. MATRICES & LINEAR ALGEBRA

7. Move to Row 3; there is already a 1 in the pivot position; add 1
2× Row

3 to Row 1,  1 0 0 0 1
2

1
8

0 1 − 1
2 − 1

4 0 1
8

0 0 1 − 1
2 1 0


8. Add 1

2× Row 3 to Row 2, 1 0 0 0 1
2

1
8

0 1 0 − 1
2

1
2

1
8

0 0 1 − 1
2 1 0


Once the original matrix is reduced to the identity matrix, the final columns

of the augmented matrix contain the inverse, as we can verify for the exam-
ple:  2 −2 0

1 −1 1
4 4 −4


 0 1

2
1
8

− 1
2

1
2

1
8

− 1
2 1 0

=

 1 0 0
0 1 0
0 0 1

 X

It is simple to explain why Gaussian elimination works: Each elemen-
tary row operation can be represented as multiplication on the left by an
appropriately formulated square matrix. Thus, for example, to interchange
the second and third rows, we can multiply on the left by6

EIII ≡

 1 0 0
0 0 1
0 1 0


The elimination procedure applies a sequence of (say p) elementary row
operations to the augmented matrix [ A

(n×n)
,In], which we can then write as

Ep · · ·E2E1 [A,In] = [In,B]

using Ei to represent the ith operation in the sequence. Defining E≡ Ep · · ·
E2E1, we have E [A,In] = [In,B]; that is, EA = In (implying that E = A−1),

6Reader: Show how Types I (e.g., Step 1 in the example) and II (e.g., Step 3 in the example)
elementary row operations can also be represented as multiplication on the left by suitably
formulated square matrices, say EI and EII.
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1.1. MATRICES 15

and EIn = B. Consequently, B = E = A−1. If A is singular, then it cannot
be reduced to I by elementary row operations: At some point in the process,
we will find that no nonzero pivot is available.

The matrix inverse obeys the following rules:

I−1 = I

(A−1)−1 = A

(A′)−1 = (A−1)′

(AB)−1 = B−1A−1

(cA)−1 = c−1A−1

(where A and B are order-n nonsingular matrices, and c is a nonzero scalar).
If D= diag(d1,d2, . . . ,dn), and if all di 6= 0, then D is nonsingular and D−1 =
diag(1/d1,1/d2, . . .,1/dn); if any of the di are 0, then D is singular. Finally,
the inverse of a nonsingular symmetric matrix is itself symmetric.

1.1.4 Determinants

Each square matrix A is associated with a scalar called its determinant, writ-
ten as detA.7 For a (2× 2) matrix A, the determinant is detA = a11a22−
a12a21. For a (3×3) matrix A, the determinant is

detA =a11a22a33−a11a23a32 +a12a23a31

−a12a21a33 +a13a21a32−a13a22a31

Although there is a general definition of the determinant of a square ma-
trix of order n, I find it simpler to define the determinant implicitly by spec-
ifying the following properties (or axioms):

D1: Multiplying a row of a square matrix by a scalar constant multiplies
the determinant of the matrix by the same constant.

D2: Adding a multiple of one row to another leaves the determinant
unaltered.

D3: Interchanging two rows changes the sign of the determinant.

D4: detI = 1.

7A common alternative notation for detA is |A|.
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16 CHAPTER 1. MATRICES & LINEAR ALGEBRA

Axioms D1, D2, and D3 specify the effects on the determinant of the three
kinds of elementary row operations. Because the Gaussian elimination
method described previously reduces a square matrix to the identity ma-
trix, these properties, along with axiom D4, are sufficient for establishing
the value of the determinant. Indeed, the determinant is simply the product
of the pivot elements, with the sign of the product reversed if, in the course
of elimination, an odd number of row interchanges is employed. For the il-
lustrative matrix A in Equation 1.7 (on page 12), then, the determinant is
−(2)(8)(1) = −16, because there was one row interchange (in Step 4) and
the pivots were 2, 8, and 1 (Steps 1, 5, and 7). If a matrix is singular, then
one or more of the pivots are zero, and the determinant is zero. Conversely,
a nonsingular matrix has a nonzero determinant.

Some additional properties of determinants (for order-n square matrices
A and B) are as follows:

• detA′ = detA.

• det(AB) = detA×detB.

• If A is nonsingular, then detA−1 = 1/detA.

• If A is idempotent (recall, A2 = A), then detA = 1 if A is nonsingular
or 0 if it is singular.

The third result follows from second, along with the observations that
AA−1 = In and detIn = 1. The fourth result also follows from the second.
(Reader: Can you see why?)

In addition to their useful algebraic properties, determinants occasionally
appear directly in statistical applications—for example, in the formula for
the multivariate-normal distribution (see Section 5.2.5).

1.1.5 The Kronecker Product

Suppose that A is an m× n matrix and that B is a p× q matrix. Then the
Kronecker product (named after the 19th-century German mathematician
Leopold Kronecker) of A and B, denoted A⊗B, is defined as

A⊗B
(mp×nq)

≡


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
am1B am2B · · · amnB
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1.1. MATRICES 17

The Kronecker product is sometimes useful in statistics for compactly
representing patterned matrices. For example, suppose that

ΣΣΣ =

[
σ2

1 σ12
σ12 σ2

2

]
is a (2×2) variance–covariance matrix (see Section 4.2.4). Then,

I3⊗ΣΣΣ =

 1 0 0
0 1 0
0 0 1

⊗[ σ2
1 σ12

σ12 σ2
2

]

=



σ2
1 σ12 0 0 0 0

σ12 σ2
2 0 0 0 0

0 0 σ2
1 σ12 0 0

0 0 σ12 σ2
2 0 0

0 0 0 0 σ2
1 σ12

0 0 0 0 σ12 σ2
2


Such expressions arise naturally, for example, in multivariate statistics.

Many of the properties of the Kronecker product are similar to those of
ordinary matrix multiplication; in particular,

A⊗ (B+C) = A⊗B+A⊗C
(B+C)⊗A = B⊗A+C⊗A
(A⊗B)⊗D = A⊗ (B⊗D)

c(A⊗B) = (cA)⊗B = A⊗ (cB)

where B and C are matrices of the same order, and c is a scalar. As well, like
matrix multiplication, the Kronecker product is not commutative: In general,
A⊗B 6= B⊗A. Additionally, for matrices A

(m×n)
, B
(p×q)

, C
(n×r)

, and D
(q×s)

,

(A⊗B)(C⊗D) = AC⊗BD

Consequently, if A
(n×n)

and B
(m×m)

are nonsingular matrices, then

(A⊗B)−1 = A−1⊗B−1

because

(A⊗B)
(
A−1⊗B−1)= (AA−1)⊗ (BB−1) = In⊗ Im = I(nm×nm)
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18 CHAPTER 1. MATRICES & LINEAR ALGEBRA

Finally, for any matrices A and B,

(A⊗B)′ = A′⊗B′

and for square matrices A and B of order m and n, respectively,

trace(A⊗B) = trace(A)× trace(B)
det(A⊗B) = (detA)m(detB)n

1.2 Basic Vector Geometry

Considered algebraically, vectors are one-column (or one-row) matrices.
Vectors also have the following geometric interpretation: The vector x = [x1,
x2, . . .,xn]

′ is represented as a directed line segment extending from the ori-
gin of an n-dimensional coordinate space to the point defined by the entries
(called the coordinates) of the vector. Some examples of geometric vectors
in 2D and 3D space are shown in Figure 1.1.

The basic arithmetic operations defined for vectors have simple geometric
interpretations. To add two vectors x1 and x2 is, in effect, to place the “tail”
of one at the tip of the other. When a vector is shifted from the origin in this
manner, it retains its length and orientation (the angles that it makes with
respect to the coordinate axes); length and orientation serve to define a vector
uniquely. The operation of vector addition, illustrated in two dimensions in
Figure 1.2, is equivalent to completing a parallelogram in which x1 and x2
are two adjacent sides; the vector sum is the diagonal of the parallelogram,
starting at the origin.

As shown in Figure 1.3, the difference x1− x2 is a vector whose length
and orientation are obtained by proceeding from the tip of x2 to the tip of x1.
Likewise, x2−x1 proceeds from x1 to x2.

The length of a vector x, denoted by ||x||, is the square root of its sum of
squared coordinates:

||x||=

√
n

∑
i=1

x2
i

This result follows from the Pythagorean theorem in two dimensions,8 as
shown in Figure 1.4(a). The result can be extended one dimension at a time

8Recall that the Pythagorean theorem (named after the ancient Greek mathematician Pythago-
ras) states that the squared length of the hypotenuse (side opposite the right angle) in a right
triangle is equal to the sums of squared lengths of the other two sides of the triangle.
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1.2. BASIC VECTOR GEOMETRY 19

Figure 1.1 Examples of geometric vectors in (a) two-dimensional and
(b) three-dimensional space. Each vector is a directed line
segment from the origin (0 = [0,0]′ in two dimensions or
0 = [0,0,0]′ in three dimensions) to the point whose
coordinates are given by the entries of the vector.

to higher-dimensional coordinate spaces, as shown for a 3D space in Figure
1.4(b). The distance between two vectors x1 and x2, defined as the distance
separating their tips, is given by ||x1−x2||= ||x2−x1|| (see Figure 1.3).

The product ax of a scalar a and a vector x is a vector of length |a|× ||x||,
as is readily verified:

||ax||=
√

∑(axi)2

=
√

a2 ∑x2
i

= |a|× ||x||

If the scalar a is positive, then the orientation of ax is the same as that of
x; if a is negative, then ax is collinear with (i.e., along the same line as) x
but in the opposite direction. The negative −x = (−1)x of x is, therefore, a
vector of the same length as x but of opposite orientation. These results are
illustrated for two dimensions in Figure 1.5.

Copyright ©2021 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute



20 CHAPTER 1. MATRICES & LINEAR ALGEBRA

Figure 1.2 Vectors are added by placing the “tail” of one on the tip of the
other and completing the parallelogram. The sum is the
diagonal of the parallelogram starting at the origin.

1.3 Vector Spaces and Subspaces

The vector space of dimension n is the infinite set of all vectors x = [x1,
x2, . . .,xn]

′; the coordinates xi may be any real numbers. The vector space of
dimension one is, therefore, the real line; the vector space of dimension two
is the plane; and so on.

The subspace of the n-dimensional vector space that is generated by a set
of k vectors {x1,x2, . . .,xk} is the subset of vectors y in the space that can be
expressed as linear combinations of the generating set:

y = a1x1 +a2x2 + · · ·+akxk

The set of vectors {x1,x2, . . .,xk} is said to span the subspace that it gener-
ates. Notice that each of x1, x2, . . .,xk is a vector, with n coordinates; that is,
{x1, x2, . . . ,xk} is a set of k vectors, not a vector with k coordinates.

A set of vectors {x1,x2, . . .,xk} is linearly independent if no vector in the
set can be expressed as a linear combination of other vectors:

x j = a1x1 + · · ·+a j−1x j−1 +a j+1x j+1 + · · ·+akxk (1.8)
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Figure 1.3 Vector differences x1−x2 and x2−x1.

(where some of the constants al can be zero). Equivalently, the set of vectors
is linearly independent if there are no constants b1, b2, . . .,bk, not all zero,
for which

b1x1 +b2x2 + · · ·+bkxk = 0
(n×1)

(1.9)

Equation 1.8 or 1.9 is called a linear dependency or collinearity. If these
equations hold, then the vectors comprise a linearly dependent set. By Equa-
tion 1.8, the zero vector is linearly dependent on every other vector, inas-
much as 0 = 0x.

The dimension of the subspace spanned by a set of vectors is the number
of vectors in its largest linearly independent subset. The dimension of the
subspace spanned by {x1, x2, . . .,xk} cannot, therefore, exceed the smaller of
k and n. These relations are illustrated for a vector space of dimension n = 3
in Figure 1.6. Figure 1.6(a) shows the 1D subspace (i.e., the line) generated
by a single nonzero vector x; Figure 1.6(b) shows the 1D subspace generated
by two collinear vectors x1 and x2; Figure 1.6(c) shows the 2D subspace (the
plane) generated by two linearly independent vectors x1 and x2; and Figure
1.6(d) shows the plane generated by three linearly dependent vectors x1, x2,
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Figure 1.4 The length of a vector is the square root of its sum of squared

coordinates, ||x||=
√

∑
n
i=1 x2

i . This result is illustrated in (a)
two and (b) three dimensions.
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Figure 1.5 Product ax of a scalar and a vector, illustrated in two
dimensions. The vector ax is collinear with x; it is in the same
direction as x if a > 0, and in the opposite direction from x if
a < 0.

and x3, no two of which are collinear. In this last case, any one of the three
vectors lies in the plane generated by the other two.

A linearly independent set of vectors {x1, x2, . . .,xk}—such as {x} in
Figure 1.6(a), {x1,x2} in Figure 1.6(c), or (say) {x1,x3} in Figure 1.6(d)—
is said to provide a basis for the subspace that it spans. (Reader: What about
Figure 1.6(b)?) Any vector y in this subspace can be written uniquely as a
linear combination of the basis vectors:

y = c1x1 + c2x2 + · · ·+ ckxk

The constants c1, c2, . . .,ck are called the coordinates of y with respect to
the basis {x1, x2, . . .,xk}. Because 0 = 0x1+0x2+ · · ·+0xk, the zero vector
is included in every subspace.

The coordinates of a vector with respect to a basis for a 2D subspace can
be found geometrically by the parallelogram rule of vector addition, as illus-
trated in Figure 1.7. Finding coordinates algebraically entails the solution of
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x y x=
subspace

a

0 0

00

x1

x3

x1

x1

x2

x2

x2

y x x= +

subspace

a a1 1 2 2

y x x x= + +

subspace

a a a1 1 2 2 3 3

y x x= +

subspace

a a1 1 2 2

(a)
(c)

(b) (d)

Figure 1.6 Subspaces generated by sets of vectors in three-dimensional
space. (a) One nonzero vector generates a one-dimensional
subspace (a line). (b) Two collinear vectors also generate a
one-dimensional subspace. (c) Two linearly independent
vectors generate a two-dimensional subspace (a plane).
(d) Three linearly dependent vectors, two of which are
linearly independent, generate a two-dimensional subspace.
The lines in (a) and (b) extend infinitely, as do the planes in
(c) and (d): The planes are drawn between x1 and x2 only for
clarity.
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Figure 1.7 The coordinates of y with respect to the basis {x1,x2} of a
two-dimensional subspace can be found from the
parallelogram rule of vector addition.

a system of linear simultaneous equations in which the c js are the unknowns:

y
(n×1)

= c1x1 + c2x2 + · · ·+ ckxk

= [x1,x2, . . .,xk]


c1
c2
...

ck


= X

(n×k)
c

(k×1)

When the vectors in {x1,x2, . . .,xk} are linearly independent, the matrix X is
of full column rank k, and the equations have a unique solution. The concept
of rank and the solution of systems of linear simultaneous equations are
taken up later in this chapter (Section 1.4.2).

1.3.1 Orthogonality and Orthogonal Projections

Recall that the inner product of two vectors is the sum of products of their
coordinates:

x ·y =
n

∑
i=1

xiyi
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Figure 1.8 When two vectors x and y are orthogonal, as in (a), their inner
product x ·y is zero. When the vectors are not orthogonal, as
in (b), their inner product is nonzero.

Two vectors x and y are orthogonal (i.e., perpendicular) if their inner prod-
uct is zero. The essential geometry of vector orthogonality is shown in Fig-
ure 1.8. Although x and y lie in an n-dimensional space (which cannot be
visualized directly when n > 3), they span a subspace of dimension two,
which, by convention, I make the plane of the paper.9 When x and y are
orthogonal, as in Figure 1.8(a), the two right triangles with vertices (0, x,
x+y) and (0, x, x−y) are congruent; consequently, ||x+y||= ||x−y||. Be-
cause the squared length of a vector is the inner product of the vector with
itself (x ·x = ∑x2

i ), we have

(x+y) · (x+y) = (x−y) · (x−y)
x ·x+2x ·y+y ·y = x ·x−2x ·y+y ·y

4x ·y = 0
x ·y = 0

When, in contrast, x and y are not orthogonal, as in Figure 1.8(b), then ||x+
y|| 6= ||x−y||, and x ·y 6= 0.

The definition of orthogonality can be extended to matrices in the fol-
lowing manner: The matrix X

(n×k)
is orthogonal if each pair of its columns

9It is helpful to employ this device in applying vector geometry to statistical problems, where
the subspace of interest can often be confined to two or three dimensions, even though the
dimension of the full vector space is typically equal to the sample size n.
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Figure 1.9 The orthogonal projection ŷ = bx of y onto x.

Figure 1.10 The orthogonal projection ŷ = bx is the point along the line
spanned by x that is closest to y.

is orthogonal—that is, if X′X is diagonal.10 The matrix X is orthonormal if
X′X = I.

The orthogonal projection of one vector y onto another vector x is a scalar
multiple ŷ = bx of x such that (y− ŷ) is orthogonal to x. The geometry of or-
thogonal projection is illustrated in Figure 1.9. By the Pythagorean theorem
(see Figure 1.10), ŷ is the point along the line spanned by x that is closest to

10The i, jth entry of X′X is x′ix j = xi · x j , where xi and x j are, respectively, the ith and jth
columns of X. The ith diagonal entry of X′X is likewise x′ixi = xi · xi, which is necessarily
nonzero unless xi = 0.
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Figure 1.11 The angle w separating two vectors, x and y: (a)
0◦ < w < 90◦ (when b is positive); (b) 90◦ < w < 180◦

(when b is negative).

y. To find b, we note that

x · (y− ŷ) = x · (y−bx) = 0

Thus, x ·y−bx ·x = 0 and b = (x ·y)/(x ·x).
The orthogonal projection of y onto x can be used to determine the angle

w separating two vectors, by finding its cosine. Because the cosine function
is symmetric around w = 0, it does not matter in which direction we mea-
sure an angle, and I will simply treat angles as positive.11 I will distinguish
between two cases:12 In Figure 1.11(a), the angle separating the vectors is
between 0◦ and 90◦; in Figure 1.11(b), the angle is between 90◦ and 180◦.

11The cosine and other basic trigonometric functions are reviewed in Section 3.1.5.
12By convention, we examine the smaller of the two angles separating a pair of vectors, and,
therefore, never encounter angles that exceed 180◦. Call the smaller angle w; then the larger
angle is 360◦−w. This convention is of no consequence because cos(360−w) = cos(w).
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In the first instance,

cos(w) =
||ŷ||
||y||

=
b||x||
||y||

=
x ·y
||x||2

× ||x||
||y||

=
x ·y

||x||× ||y||

and, likewise, in the second instance,

cos(w) =−||ŷ||
||y||

=
b||x||
||y||

=
x ·y

||x||× ||y||

In both instances, the sign of b for the orthogonal projection of y onto x
correctly reflects the sign of cos(w). When the vectors are orthogonal (not
shown in the figure), b = 0, cos(w) = 0, and w = 90◦; when the vectors are
collinear (also not shown), cos(w) = 1, and w = 0◦.

The orthogonal projection of a vector y onto the subspace spanned by a
set of vectors {x1, x2, . . .,xk} is the vector

ŷ = b1x1 +b2x2 + · · ·+bkxk

formed as a linear combination of the x js such that (y− ŷ) is orthogonal to
each and every vector x j in the set. The geometry of orthogonal projection
for k = 2 is illustrated in Figure 1.12. The vector ŷ is the point closest to y
in the subspace spanned by the x js.

Placing the constants b j into a vector b, and gathering the vectors x j into
an (n× k) matrix X≡ [x1, x2, . . .,xk], we have ŷ = Xb. By the definition of
an orthogonal projection,

x j · (y− ŷ) = x j · (y−Xb) = 0 for j = 1, . . .,k (1.10)

Equivalently, X′(y−Xb) = 0, or X′y = X′Xb. We can solve this matrix
equation uniquely for b as long as the (k× k) matrix X′X is nonsingular,
in which case b = (X′X)−1X′y (see Section 1.4.2 on the solution of linear
simultaneous equations). The matrix X′X is nonsingular if {x1,x2, . . .,xk} is
a linearly independent set of vectors, providing a basis for the subspace that
it generates; otherwise, b is not unique.

The application of the geometry of orthogonal projections to linear least-
squares regression is quite direct, and so I will explain it here (rather than in
Chapter 7 on least-square regression). For example, suppose that the vector x
in Figures 1.9 and 1.11 represents the explanatory (“independent”) variable
in a simple regression; the vector y represents the response (“dependent”)
variable; and both variables are expressed as deviations from their means,
x = {Xi−X} and y = {Yi−Y}. Then ŷ = bx is the mean-deviation vector
of fitted (“predicted”) Y -values from the linear least-squares regression of Y
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Figure 1.12 The orthogonal projection ŷ of y onto the subspace (plane)
spanned by x1 and x2.

on X ; b is the slope coefficient for the regression; and y− ŷ is the vector of
least-square residuals. By the Pythagorean theorem,

||y||2 = ||ŷ||2 + ||y− ŷ||2

which shows the decomposition of the total sum of squares for Y into the
regression and residual sums of squares—the so-called analysis of variance
for the regression. The correlation r between X and Y is then the cosine of
the angle w separating their mean-deviation vectors.

Suppose similarly that y is the mean-deviation vector for the response
variable and that x1 and x2 are the mean-deviation vectors for two explana-
tory variables in a multiple regression. Then Figure 1.12 represents the linear
least-squares regression of Y on X1 and X2; b1 and b2 are the partial regres-
sion coefficients for the two explanatory variables; ŷ is the vector of mean-
deviation fitted values for the multiple regression; the right triangle formed
by the origin and the vectors y and ŷ gives the analysis of variance for the
multiple regression; and the cosine of the angle separating y and ŷ is the
multiple-correlation coefficient R for the regression—that is, the correlation
between observed and fitted Y -values.
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1.4 Matrix Rank and the Solution of Linear Simultaneous Equa-
tions

1.4.1 Rank

The row space of an (m×n) matrix A is the subspace of the n-dimensional
vector space spanned by the m rows of A (treated as a set of vectors). The
rank of A is the dimension of its row space, that is, the maximum number
of linearly independent rows in A. It follows immediately that rank(A) ≤
min(m,n).

For example, the row space of the matrix

A =

[
1 0 0
0 1 0

]
consists of all vectors

x′ = a[1,0,0]+b[0,1,0]
= [a,b,0]

for any values of a and b. This subspace is of dimension two, and thus
rank(A) = 2.

A matrix is said to be in reduced row–echelon form (RREF) if it satisfies
the following criteria:

R1: All of its nonzero rows (if any) precede all of its zero rows (if any).

R2: The first nonzero entry (proceeding from left to right) in each nonzero
row, called the leading entry in the row, is 1.

R3: The leading entry in each nonzero row after the first is to the right of
the leading entry in the previous row.

R4: All other entries are 0 in a column containing a leading entry.

RREF is displayed schematically in the matrix in 1.11, where the asterisks
represent elements of arbitrary value (i.e., they may be zero or nonzero):



0 · · · 0 1 ∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗ 0 ∗ · · · ∗
...

...
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 ∗ · · · ∗
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0



nonzero
rows

zero
rows

(1.11)
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The rank of a matrix in RREF is equal to the number of nonzero rows in
the matrix: The pattern of leading entries, each located in a column all of
whose other elements are zero, ensures that no nonzero row can be formed
as a linear combination of other rows.

A matrix can be placed in RREF by a sequence of elementary row opera-
tions, adapting the Gaussian elimination procedure described earlier in this
chapter. For example, starting with the matrix −2 0 −1 2

4 0 1 0
6 0 1 2


1. Divide Row 1 by −2,  1 0 1

2 −1

4 0 1 0
6 0 1 2


2. Subtract 4× Row 1 from Row 2, 1 0 1

2 −1

0 0 −1 4
6 0 1 2


3. Subtract 6× Row 1 from Row 3, 1 0 1

2 −1

0 0 −1 4
0 0 −2 8


4. Multiply Row 2 by −1, 1 0 1

2 −1

0 0 1 −4
0 0 −2 8


5. Subtract 1

2× Row 2 from Row 1, 1 0 0 1
0 0 1 −4
0 0 −2 8
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6. Add 2× Row 2 to Row 3, 1 0 0 1
0 0 1 −4
0 0 0 0



The rank of a matrix A is equal to the rank of its RREF AR, because a
zero row in AR can only arise if one row of A is expressible as a linear
combination of other rows (or if A contains a zero row). That is, none of the
elementary row operations alters the rank of a matrix. The rank of the matrix
transformed to RREF in the example is thus 2. The RREF of a nonsingular
square matrix is the identity matrix, and the rank of a nonsingular square ma-
trix is therefore equal to its order. Conversely, the rank of a singular matrix
is less than its order.

I have defined the rank of a matrix A as the dimension of its row space. It
can be shown that the rank of A is also equal to the dimension of its column
space—that is, to the maximum number of linearly independent columns
in A.

1.4.2 Linear Simultaneous Equations

A system of m linear simultaneous equations in n unknowns can be written
in matrix form as

A
(m×n)

x
(n×1)

= b
(m×1)

(1.12)

where the elements of the coefficient matrix A and the right-hand-side vec-
tor b are prespecified constants, and x is a vector of unknowns. Suppose
that there is an equal number of equations and unknowns—that is, m = n.
Then if the coefficient matrix A is nonsingular, Equation 1.12 has the unique
solution x = A−1b.

Alternatively, A may be singular. Then A can be transformed to RREF by
a sequence of (say, p) elementary row operations, representable as succes-
sive multiplication on the left by elementary-row-operation matrices:

AR = Ep · · ·E2E1A = EA

Applying these operations to both sides of Equation 1.12 produces

EAx = Eb (1.13)
ARx = bR
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where bR ≡Eb. Equations 1.12 and 1.13 are equivalent in the sense that any
solution vector x = x∗ that satisfies one system also satisfies the other.

Let r represent the rank of A. Because r < n (recall that A is singular),
AR contains r nonzero rows and n− r zero rows. If any zero row of AR
is associated with a nonzero entry (say, b) in bR, then the system of equa-
tions is inconsistent or overdetermined, for it contains the self-contradictory
“equation”

0x1 +0x2 + · · ·+0xn = b 6= 0

If, on the other hand, every zero row of AR corresponds to a zero entry in bR,
then the equation system is consistent, and there is an infinity of solutions
satisfying the system: n− r of the unknowns may be given arbitrary values,
which then determine the values of the remaining r unknowns. Under this
circumstance, we say that the equation system is underdetermined.

Suppose now that there are fewer equations than unknowns—that is, m <
n. Then r is necessarily less than n, and the equations are either overdeter-
mined (if a zero row of AR corresponds to a nonzero entry of bR) or un-
derdetermined (if they are consistent). For example, consider the following
system of three equations in four unknowns:

 −2 0 −1 2
4 0 1 0
6 0 1 2




x1
x2
x3
x4

=

 1
2
5


Adjoin the right-hand-side vector to the coefficient matrix −2 0 −1 2 1

4 0 1 0 2
6 0 1 2 5


and reduce the coefficient matrix to row–echelon form:

1. Divide Row 1 by −2, 1 0 1
2 −1 − 1

2

4 0 1 0 2
6 0 1 2 5
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2. Subtract 4 × Row 1 from Row 2, and subtract 6 × Row 1 from Row
3,  1 0 1

2 −1 − 1
2

0 0 −1 4 4
0 0 −2 8 8


3. Multiply Row 2 by −1, 1 0 1

2 −1 − 1
2

0 0 1 −4 −4
0 0 −2 8 8


4. Subtract 1

2× Row 2 from Row 1, and add 2 × Row 2 to Row 3, 1↙ 0 0 1 3
2

0 0 1↙ −4 −4
0 0 0 0 0


(with the leading entries marked by arrows).

Writing the result as a scalar system of equations, we get

x1 + x4 =
3
2

x3−4x4 =−4
0x1 +0x2 +0x3 +0x4 = 0

The third equation is uninformative (it simply states that 0 = 0), but it does
confirm that the original system of equations is consistent. The first two
equations imply that the unknowns x2 and x4 can be given arbitrary values
(say x∗2 and x∗4), and the values of x1 and x3 (corresponding to the leading
entries) follow:

x1 =
3
2 − x∗4

x3 =−4+4x∗4

and thus any vector of the form

x =


x1
x2
x3
x4

=


3
2 − x∗4

x∗2
−4+4x∗4

x∗4
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is a solution of the system of equations.
Now consider the system of equations −2 0 −1 2

4 0 1 0
6 0 1 2




x1
x2
x3
x4

=

 1
2
1


Attaching b to A and transforming the coefficient matrix to RREF yields (as
the reader may wish to verify) 1 0 0 1 1

2
0 0 1 −4 −2
0 0 0 0 2


The last “equation,”

0x1 +0x2 +0x3 +0x4 = 2

is contradictory, implying that the original system of equations has no solu-
tion (i.e., is overdetermined).

Suppose, finally, that there are more equations than unknowns: m > n.
If A is of full-column rank (i.e., if r = n), then AR consists of the order-n
identity matrix followed by m− r zero rows. If the equations are consistent,
they therefore have a unique solution; otherwise they are overdetermined. If
r < n, the equations are either overdetermined (if inconsistent) or underde-
termined (if consistent).

To illustrate these results geometrically, consider a system of three linear
equations in two unknowns:13

a11x1 +a12x2 = b1

a21x1 +a22x2 = b2

a31x1 +a32x2 = b3

Each equation describes a line in a 2D coordinate space in which the un-
knowns define the axes, as illustrated schematically in Figure 1.13. If the
three lines intersect at a point, as in Figure 1.13(a), then there is a unique
solution to the equation system: Only the pair of values (x∗1,x

∗
2) simulta-

neously satisfies all three equations. If the three lines fail to intersect at a

13The geometric representation of linear equations by lines (or, more generally, by linear sur-
faces, i.e., planes in three dimensions or hyperplanes in higher dimensions) should not be con-
fused with the geometric vector representation taken up previously in this chapter. The graphs
of linear equations in two and three dimensions are reviewed in Section 3.1.2.
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(a)

x1

x2

x1*

x2*

(b)

x1

x2

(c)

x1

x2

(d)

x1

x2

Figure 1.13 Three linear equations in two unknowns x1 and x2: (a)
unique solution (x1 = x∗1,x2 = x∗2); (b) and (c)
overdetermined (no solution); (d) underdetermined (three
coincident lines, an infinity of solutions).
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Table 1.1 Solutions of m Linear Simultaneous Equations in n Unknowns

Number of
equations m < n m = n m > n

Rank of
coefficient
matrix

r < n r < n r = n r < n r = n

General equation system

Consistent Under- Under- Unique Under- Unique
determined determined solution determined solution

Inconsistent Over- Over- — Over- Over-
determined determined determined determined

Homogeneous equation system

Consistent Nontrivial Nontrivial Trivial Nontrivial Trivial
solutions solutions solution solutions solution

common point, as in Figures 1.13(b) and (c), then no pair of values of the
unknowns simultaneously satisfies the three equations, which therefore are
overdetermined. Last, if the three lines are coincident, as in Figure 1.13(d),
then any pair of values on the common line satisfies all three equations, and
the equations are underdetermined.

When the right-hand-side vector b in a system of linear simultaneous
equations is the zero vector, the system of equations is said to be homo-
geneous:

A
(m×n)

x
(n×1)

= 0
(m×1)

The trivial solution x = 0 always satisfies a homogeneous system, which
consequently cannot be inconsistent. From the previous work in this section,
we can see that nontrivial solutions exist if rank(A) < n—that is, when the
system is underdetermined.

The results concerning the solution of linear simultaneous equations de-
veloped in this section are summarized in Table 1.1.

Linear simultaneous equations have many statistical applications, such as
solving for least-squares coefficients in regression analysis (see Section 7.1).

1.4.3 Generalized Inverses

As I explained previously in this chapter, only square nonsingular matrices
have inverses. All matrices, however—including singular and rectangular
matrices—have generalized inverses, which are occasionally employed in
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1.4. RANK AND LINEAR SIMULTANEOUS EQUATIONS 39

statistical applications, such as some presentations of linear statistical mod-
els.14

A generalized inverse of the (m× n) matrix A is an (n×m) matrix A−
that satisfies the equation

AA−A = A (1.14)

We say that A− is a generalized inverse, not the generalized inverse of A,
because unless A is square and nonsingular (in which case A− = A−1), the
generalized inverse is not unique.15

There are many ways to find a generalized inverse of a matrix, including
by Gaussian elimination. Suppose that we begin by putting the matrix A in
RREF by a sequence of elementary row operations; we know that we can
represent this process by successive multiplication on the left by suitably
configured elementary-row-operations matrices (see pages 14 and 32):

EA = Ep · · ·E2E1A = AR (1.15)

where E ≡ Ep · · ·E2E1 is a nonsingular (m×m) matrix. Applying an anal-
ogous series of Types II and III elementary column operations (pivoting is
unnecessary because all of the leading entries in AR are already 1), we can
further reduce AR to the following canonical form:

AC
(m×n)

≡ ARE∗ = ARE∗1E∗2 · · ·E∗q =

 Ir 0
(r×n−r)

0
(m−r×r)

0
(m−r×n−r)

 (1.16)

where E∗ ≡ E∗1E∗2 · · ·E∗q is a nonsingular (n× n) matrix; the order r of the
identity matrix in the upper-left corner is the rank of A; and any or all of
the zero matrices may be absent. For example, if A is a square nonsingular
matrix of order n then r = n and none of the zero matrices are required.

Putting together Equations 1.15 and 1.16, we have

AC = EAE∗ (1.17)

14For an extensive discussion of the role of generalized inverses in statistics, See Rao and Mitra
(1971).
15The generalized inverse can be made unique by placing additional restrictions on it beyond
Equation 1.14: For example, the Moore–Penrose generalized inverse A+ satisfies four condi-
tions: AA+A = A; A+AA+ = A+; AA+ is symmetric; and A+A is symmetric. In a typical
statistical application, however, one generalized inverse is as good as another.
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40 CHAPTER 1. MATRICES & LINEAR ALGEBRA

A generalized inverse of A is then given by16

A− ≡ E∗A′CE

Consider, for example, the matrix

A =

 −2 0 −1 2
4 0 1 0
6 0 1 2


Earlier in the chapter (page 32), I transformed this matrix to RREF by a

sequence of elementary row operations:

AR =

 1 0 0 1
0 0 1 −4
0 0 0 0


The reduction to canonical form is completed by exchanging Columns 2 and
3, and then sweeping out the fourth column, producing

AC =

 1 0 0 0
0 1 0 0
0 0 0 0


Collecting the elementary row and column operations into matrices, we have
(as the reader may wish to verify)

E =

 1
2

1
2 0

−2 −1 0
−1 −2 1



E∗ =


1 0 0 −1
0 0 1 0
0 1 0 4
0 0 0 1


16The following proof is adapted from Healy (1986, p. 40): First, A′C is a generalized inverse of
AC (Reader: Check it!); second, solving Equation 1.17 for A produces A = E−1ACE∗−1. Then,

AA−A = (E−1ACE∗−1)(E∗A′CE)(E−1ACE∗−1)

= E−1ACA′CACE∗−1

= E−1ACE∗−1

= A

which establishes the result.
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from which

A− = E∗A′CE

=


1 0 0 −1
0 0 1 0
0 1 0 4
0 0 0 1




1 0 0
0 1 0
0 0 0
0 0 0


 1

2
1
2 0

−2 −1 0
−1 −2 1



=


1
2

1
2 0

0 0 0
−2 −1 0

0 0 0


is a generalized inverse of A (as the reader can also verify).

Now consider a system of m linear simultaneous equations in n unknowns,

A
(m×n)

x
(n×1)

= b
(m×1)

as discussed in the preceding section, and suppose that the system of equa-
tions is consistent and underdetermined. Then

x∗ = A−b (1.18)

provides an arbitrary solution to the equations. If the equation system has a
unique solution, then Equation 1.18 yields it. Finally, if the equation system
is overdetermined, then the “solution” provided by Equation 1.18 will fail
to satisfy the original system of equations. Thus, if the equation system is
consistent, then AA−b = b, and if the system is inconsistent, then AA−b 6=
b. The reader may wish to apply these results to the examples in the previous
section.
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