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2 PATTERN RECOGNITION
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SUMMARY

RECOMMENDED READING

LEARNING OBJECTIVES

 1. Contrast feature and structural theories of pattern recognition.

 2. Explain how Sperling’s partial-report technique contributed to understanding 
characteristics of the visual sensory store.

 3. Explain how the word superiority effect determines why a letter in a word is better 
recognized than a letter by itself.

 4. Discuss the goals of understanding scenes and the applications of deep neural 
networks.

 5. Describe how visual disorders have increased our knowledge of neural pathways.

The study of pattern recognition is primarily the study of how people identify the objects in 
their environment. Pattern recognition, which is discussed in this chapter, and attention, in the 
next chapter, play lead roles in the perception component of the standard model of cognition 
(Figure 2.1). We focus on visual pattern recognition in this chapter to provide continuity. Other 
chapters, such as the next chapter on attention, contain material on speech recognition.

pattern recognition The stage of perception during which a stimulus is identified
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Chapter 2 • Pattern Recognition  21

Our ability to recognize patterns is impressive if we stop to consider how much variation 
there is in different examples of the same pattern. Figure 2.2 shows various styles of handwrit-
ing. Not all people have the same style of writing, and some handwriting styles are much less 
legible than others. However, unless it is very illegible, we usually are successful in recognizing 
the words.

Declarative
Long-term Memory

Working MemoryProcedural
Long-term Memory

MotorPERCEPTION

FIGURE 2.1  ■   The Perception Component of the 
Standard Model of the Mind.

FIGURE 2.2  ■   Variations in Handwriting.

Source: istockphoto.com/DNY59
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22  Cognition

Our superiority over computers as pattern recognizers has the practical advantage that pat-
tern recognition can serve as a test of whether a person or a computer program is trying to gain 
access to the Internet. If you have spent much time on the Internet you might have encountered 
a situation that required you to identify a distorted word before you were allowed to enter a site. 
The mangled word is easy for people to identify but difficult for computer search programs.

A large part of the literature on pattern recognition is concerned with alternative ways of 
describing patterns. The first section of this chapter discusses three kinds of descriptions that 
represent different theories of pattern recognition. The second section is about information-
processing models of visual pattern recognition. The next two sections focus on word recogni-
tion and scene recognition. The last section on visual agnosia describes how studying brain 
disorders has contributed to establishing the neural basis of recognizing patterns.

DESCRIBING PATTERNS

Consider the following explanation of how we recognize patterns. Our long-term memory 
(LTM) contains descriptions of many kinds of patterns. When we see or hear a pattern, we form 
a description of it and compare the description against the descriptions stored in our LTM. 
We can recognize the pattern if its description closely matches one of the descriptions stored in 
LTM. Although this is a plausible explanation, it is rather vague. For example, what form do 
these descriptions take? Let us consider three explanations that have been suggested: (1) tem-
plates, (2) features, and (3) structural descriptions.

Template Theories
Template theories propose that patterns are really not “described” at all. Rather, templates are 
holistic, or unanalyzed, entities that we compare with other patterns by measuring how much 
two patterns overlap. Imagine that you made a set of letters out of cardboard. If you made a 
cutout to represent each letter of the alphabet and we gave you a cutout of a letter that we had 
made, you could measure how our letter overlapped with each of your letters—the templates. 
The identity of our letter would be determined by which template had the greatest amount of 
overlap. The same principle would apply if you replaced your cardboard letters with a visual 
image of each letter and used the images to make mental comparisons.

There are a number of problems with using the degree of overlap as a measure of pattern rec-
ognition. First, the comparison requires that the template is in the same position and the same 
orientation, and is the same size as the pattern you are trying to identify. Thus, the position, ori-
entation, and size of the templates would have to be continuously adjusted to correspond to the 
position, orientation, and size of each pattern you wanted to recognize. A second problem is the 
great variability of patterns, as was illustrated in Figure 2.2. It would be difficult to construct a 
template for each letter that would produce a good match with all the different varieties of that 
letter.

template An unanalyzed pattern that is matched against alternative patterns by using the degrees of overlap as a 
measure of similarity
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Chapter 2 • Pattern Recognition  23

Third, a template theory doesn’t reveal how two patterns differ. We could know from a 
template theory that the capital letters P and R are similar because one overlaps substantially 
with the other. But to know how the two letters differ, we have to be able to analyze or describe 
the letters.

A fourth problem is that a template theory does not allow for alternative descriptions of the 
same pattern. You may have seen ambiguous figures that have more than one interpretation, 
such as a duck or a rabbit in Figure 2.3. The two interpretations are based on different descrip-
tions; for example, the beak of the duck is the ears of the rabbit. A template is simply an analyzed 
shape and so is unable to make this distinction. By contrast, a feature theory allows us to analyze 
patterns into their parts and to use those parts to describe the pattern.

Feature Theories
Feature theories allow us to describe a pattern by listing its parts, such as describing a friend 
as having long blond hair, a short nose, and bushy eyebrows. Part of the evidence for feature 
theories comes from recording the action potentials of individual cells in the visual cortex. By 
placing microelectrodes in the visual cortex of animals, Hubel and Wiesel (1962, 1963) discov-
ered that cells respond to only certain kinds of stimuli. Some cells might respond to a line of a 
certain width, oriented at a correct angle and located at the correct position in its visual field. 
Other cells are even concerned about the length of the line. In 1981 Hubel and Wiesel received 
a Nobel Prize for this work.

FIGURE 2.3  ■   An Ambiguous Figure that can be 
Perceived as Either a Duck or a Rabbit.

Source: “What an image depicts depends on what an image means,” by D. 
Chambers & D. Reisberg, 1985, Cognitive Psychology, 24, 145–174.

feature theory A theory of pattern recognition that describes patterns in terms of their parts, or features
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24  Cognition

Figure 2.4 shows the neural processing of visual information. Light is initially detected 
by photoreceptor cells in the retina to extract meaningful information about the visual world.  
This information is projected to the thalamus and areas of the primary visual cortex  where the 
cells discovered by Hubel and Wiesel respond to features such as lines and simple shapes.  These 
simple shapes are then combined in the ventral stream into more complex features to identify 
objects.  We will learn more about visual features in the next section on perceptual learning and 
more about neural pathways in the last section on visual disorders.

Perceptual Learning
Feature theories are convenient for explaining perceptual development, and one of the best 
discussions of feature theories is contained in Eleanor Gibson's (1969) Principles of Perceptual 
Learning and Development. Gibson’s theory is that perceptual learning occurs through the dis-
covery of features that distinguish one pattern from another.

FIGURE 2.4  ■   Neural Processing of Visual 
Features.

Source: Adapted from NNATE: How the Wiring of Our Brains Shapes Who 
We Are, by K. J. Mitchell, 2018, Princeton, NJ: Princeton University 
Press.
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Chapter 2 • Pattern Recognition  25

Although most pattern recognition theorists make use of the feature concept, it is often a 
challenging task to find a good set of features. Gibson (1969) proposed the following criteria as 
a basis for selecting a set of features for uppercase letters:

 1. The features should be critical ones and present in some members of the set but not in 
others to provide a contrast.

 2. The identity of the features should remain unchanged under changes in brightness, 
size, and perspective.

 3. The features should yield a unique pattern for each letter.

 4. The number of proposed features should be reasonably small.

Gibson used these criteria, empirical data, and intuition to derive a set of features for upper-
case letters. The features consist primarily of different lines and curves that are the components 
of letters. Examples of lines include a horizontal line, a vertical line, and diagonal lines that 
slant either to the right or to the left as occur in the capital letter A. Examples of curves include 
a closed circle (the letter O), a circle broken at the top (the letter U), or a circle broken at the side 
(the letter C). Most letters consist of more than one feature, such as a closed circle and a diagonal 
line in the letter Q.

A set of features is usually evaluated by determining how well it can predict perceptual 
confusions, as confusable items should have many features in common. For example, the only 
difference in features for the letters P and R is the presence of a diagonal line for the letter R; 
therefore, the two should be highly confusable. The letters R and O differ in many features, and 
so they should seldom be confused.

One method for generating perceptual confusions is to ask an observer to identify letters 
that are presented very rapidly (Townsend, 1971). It is often difficult to discriminate physically 
similar letters under these conditions, and the errors provide a measure of perceived similar-
ity. Holbrook (1975) compared two feature models to determine how successfully each could 
predict the pattern of errors found by Townsend. One was the model proposed by Gibson and 
the other was a modification of the Gibson model proposed by Geyer and De Wald (1973). The 
major change in the modification was the specification of the number of features in a letter 
(such as two vertical lines for the letter H) rather than simply listing whether that feature was 
present.

A comparison of the two models revealed that the feature set proposed by Geyer and De 
Wald was superior in predicting the confusion errors made both by adults (Townsend, 1971) 
and by four-year-old children (Gibson et al., 1963). The prediction of both models improved 
when the features were optimally weighted to allow for the fact that some features are more 
important than others in accounting for confusion errors. Because the straight/curved distinc-
tion is particularly important, it should be emphasized more than the others.

perceptual confusion A measure of the frequency with which two patterns are mistakenly identified as each other
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26  Cognition

Distinctive Features
Children learn to identify an object by being able to identify differences between it and other 
objects. For example, when first confronted with the letters E and F, the child might not be 
aware of how the two differ. Learning to make this discrimination depends on discovering that 
a low horizontal line is present in the letter E but not in the letter F. The low horizontal line is a 
distinctive feature for distinguishing between an E and an F; that is, it enables us to distinguish 
one pattern from the other.

Perceptual learning can be facilitated by a learning procedure that highlights distinctive 
features. An effective method for emphasizing a distinctive feature is to initially make it a dif-
ferent color from the rest of the pattern and then gradually change it back to the original color. 
Egeland (1975) used this procedure to teach prekindergarten children how to distinguish 
between the confusable letter pairs R-P, Y-V, G-C, Q-O, M-N, and K-X. One letter of each pair 
was presented at the top of a card with six letters below it, three of which matched the sample let-
ter and three of which were the comparison letter. The children were asked to select those letters 
that exactly matched the sample letter.

One group of children received a training procedure in which the distinctive feature of 
the letter was initially highlighted in red—for example, the diagonal line of the R in the R-P 
discrimination. During the training session, the distinctive feature was gradually changed to 
black to match the rest of the letter. Another group of children viewed only black letters. They 
received feedback about which of their choices were correct, but they were not told about the 
distinctive features of the letters. Both groups were given two tests—one immediately after the 
training session and one a week later. The “distinctive features” group made significantly fewer 
errors on both tests, even though the features were not highlighted during the tests. They also 
made fewer errors during the training sessions.

Emphasizing the distinctive features produced two benefits. First, it enabled the children to 
learn the distinctive features so that they could continue to differentiate letters after the distinc-
tive features were no longer highlighted. Second, it enabled them to learn the features without 
making many errors during the training session. The failure and frustration that many children 
experience in the early stages of reading (letter discrimination) can impair their interest in later 
classroom learning.

Focusing on distinctive features might aid in distinguishing among faces, as it does in dis-
tinguishing among letters. To test this, Brennan (1985) used computer-generated caricatures 
that make distinctive features even more distinctive. For instance, if a person had large ears 
and a small nose, the caricature would have even larger ears and an even smaller nose than 
the accurate drawing. When students were shown line drawings of acquaintances, they identi-
fied people faster when shown caricatures than when shown accurate line drawings (Rhodes 

caricature An exaggeration of distinctive features to make a pattern more distinctive

distinctive feature A feature present in one pattern but absent in another, aiding one’s discrimination of the two patternsDo n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2022 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



Chapter 2 • Pattern Recognition  27

et al., 1987). Making distinctive features more distinctive through exaggeration facilitated 
recognition.

Combining Features
Distinctive features are a key component of our ability to locate an object in our environment. 
If you ever waited for your luggage at an airport, you may have noticed many people tie color-
ful ribbons to their luggage to help find their bags more easily because they “pop out” from the 
crowd. This phenomenon, as illustrated by the red flower at the beginning of the chapter,  is a 
major prediction of feature integration theory (Treisman & Gelade, 1980).

According to this theory, all features across the entire visual landscape are represented 
simultaneously and pre-attentively. Thus one need only monitor the relevant feature to 
locate a distinctive item. Treisman and Gelade (1980) found that reaction times to find an 
object in a single feature search were independent of the size of the display, indicating that 
searching for a single feature is accomplished all at once. However, when two or more fea-
tures must be combined in a conjunction search, each object in a visual scene must be exam-
ined for the combined features, which requires using attention. Returning to the airport 
example—if you have a standard black bag, you will now have to examine each black bag for 
size, shape, and so forth.

Many of the Treisman's experiments on feature integration theory explored the problem 
of how a perceiver combines color and shape, as these two features are analyzed by separate 
parts of the visual system. Figure 2.5 shows several demonstrations of how color and shape 
interact (Wolfe, 2018). In Panel A, it is easier to find the blue O, defined by the unique fea-
ture blue, than to find the red X. Finding the red X requires attending to the conjunction 
of red and X because there are also red Ts and green Xs in the display. Treisman found that 
it did not matter how many other letters were in the display, if people searched for a letter 
defined by a unique color or shape. The uniqueness made the letter pop out from the rest of 
the display, as occurs for the blue O. However, adding more red Ts and green Xs to the dis-
play would increase the time to find the red X because it requires attending to a conjunction 
of features.

Panel B illustrates another finding that is predicted by the attention requirements of fea-
ture integration theory. It is not immediately obvious that the left half of the display differs 
from the right half because attention is necessary for perceiving conjunctions of color and 
shape. The circles and diamonds switch colors, which you can observe by closely attending 
to the shape and color combinations. Another important implication of Treisman’s the-
ory is referred to as the “illusory conjunctions.” Following a brief glimpse of the display in 
Panel C, observers may report seeing an incorrect combination of color and shape, such as a 
green square. Feature integration theory states that it requires attention to combine features 
such as color and shape. Insufficient attention, therefore, causes incorrect combinations of 
features.Do n
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Structural Theories
A limitation of feature theories is that descriptions of patterns often require that we specify 
how the features are joined together. Describing how features join together to create a structure 
is a guiding principle of Gestalt psychology. To Gestalt psychologists, a pattern is more than 
the sum of its parts. Providing precise descriptions of the relations among pattern features was 
initially formalized by people working in the field of artificial intelligence who discovered that 
the interpretation of patterns usually depends on making explicit how the lines of a pattern are 
joined to other lines (Clowes, 1969).

Structural Descriptions
Structural theories describe the relations among the features by building on feature theories. 
Before we can specify the relation among features, we have to specify the features. A structural 
theory allows specification of how the features fit together. For example, the letter H consists of 
two vertical lines and a horizontal line. But we could make many different patterns from two 
vertical lines and a horizontal line. What is required is a precise specification of how the lines 
should be joined together—the letter H consists of two vertical lines connected at their mid-
points by a horizontal line.

Figure 2.6 illustrates shape skeletons for different animals that are based on structural 
descriptions originally proposed by Blum (1973) as a method for distinguishing among biologi-
cal forms. Wilder et al. (2011) adapted Blum’s methods to make predictions about how people 
would classify novel shapes into categories, such as animal and leaf. Their successful predictions 
support the argument that people use these kinds of descriptions to make classifications. The 
skeleton shapes of animals have relatively curvy limbs compared to the fewer, straighter limbs 
of leaves.

Moving from a two-dimensional world to a three-dimensional world creates additional 
challenges for identifying and describing the relations among features. Figure 2.7 illustrates 
the problem of identifying features by the relative difficulty of perceiving the three patterns as 
cubes (Kopfermann, 1930). The left pattern is the most difficult to perceive as a cube, and the 
pattern in the middle is the easiest. Try to guess why before reading further. (Hint: Think about 
the challenge of identifying features for each of the three examples.)

structural theory A theory that specifies how the features of a pattern are joined to other features of the pattern

SearchA

T T
T T

T T

O
X

X

X
X X

X
X

X

B CTexture Illusory
conjunction

FIGURE 2.5  ■   Visual Displays used to Evaluate Feature 
Integration Theory.
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The theme of Hoffman's (1998) book on visual intelligence is that people follow rules in pro-
ducing descriptions of patterns. The first of the many rules described in his book is to always 
interpret a straight line in an image as a straight line in three dimensions. Therefore, we perceive 
the long vertical line in the center of the right pattern in Figure 2.7 as a single line. However, it is 
necessary to split this line into two separate lines to form a cube because the lines belong to differ-
ent surfaces. It is particularly difficult to see the figure on the left as a cube because you also need 
to split the two long diagonal lines into two shorter lines to avoid seeing the object as a flat pattern.

The pattern in the middle is easy to perceive as a cube, which you may have recognized as 

the famous Necker cube. The Necker cube is well known because your perception of the front 
and back surfaces of the cube changes as you view it (Long & Toppino, 2004). It is yet another 
example that a structural description can change when the features do not change!

Biederman’s Component Model
Descriptions of three-dimensional objects would be fairly complicated if we had to describe each 
of the lines and curves in the object. For example, the cubes in Figure 2.7 each consist of 12 lines 
(which you may find easier to count in the left and right cubes after splitting the lines than in the 
reversing Necker cube). It would be easier to describe three-dimensional objects through simple 
volumes such as cubes, cylinders, edges, and cones than to describe all the features in these volumes.

The advantage of being able to form many different arrangements from a few components 
is that we may need relatively few components to describe objects. Biederman (1985) has pro-
posed that we need only approximately 35 simple volumes (which he called geons) to describe the 

FIGURE 2.7  ■   Perceiving Cubes.

Source: Visual Intelligence, by D. D. Hoffman, 1998, New York: Norton.

FIGURE 2.6  ■   Examples of Skeleton Structures of Animals.
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(a) (b) (c) (d) (e)

FIGURE 2.8  ■   Different Arrangements of Geons Produce Different 
Objects.

objects in the world. Some objects contain the same geons, but the geons are arranged differently. 
The mug (d) in Figure 2.8 would become a pail, if the handle were placed at the top rather than 
at the side of the container. Add two additional geons, and the pail becomes a watering can (e).

Research by Biederman et al. (2009) established that it is easier to discriminate one geon 
from a different geon than to discriminate two variations of the same geon. For example, U.S. 
college students can more easily discriminate the middle object in Figure 2.9 from the left object 
(a different geon with straight sides) than from the right object (a variation of the same geon 
with greater curvature).

A question raised by these findings is whether there are cultural differences in people’s abil-
ity to discriminate among geons. The distinction between straight lines and curves is funda-
mental in western culture, as we have already discovered, for discriminating among letters of the 
alphabet. In contrast, there is less of the need to discriminate between lines and curves by the 
Himba, a seminomadic people living in a remote region of Namibia. Nonetheless, the Himba 
also are more able to distinguish different geons from each other (the left two objects) than 
variations of the same geon (the right two objects).

If pattern recognition consists mainly in describing the relations among a limited set of 
components, then deleting information about the relations among those components should 
reduce people’s ability to recognize patterns. To test this hypothesis, Biederman removed 65% 
of the contour from drawings of objects, such as the two cups shown in Figure 2.10. In the cup 
on the left, the contour was removed from the middles of the segments, allowing observers to see 
how the segments were related. In the cup on the right, the contour was removed from the ver-
tices so observers would have more difficulty recognizing how the segments were related. When 
drawings of different objects were presented for 100 msec, subjects correctly named 70% of the 
objects if the contours were deleted at midsegments. But if the contours were deleted at the ver-
tices, subjects correctly named fewer than 50% of the objects (Biederman, 1985). As predicted, 
destroying relational information was particularly detrimental for object recognition.

geons Different three-dimensional shapes that combine to form three-dimensional objects
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Positive Curvature
of the Sides Versus
Straight Sides

Curved Main Axis
Versus
Straight Main Axis

Amount of
Curvature
of the Main Axis

MetricNonaccidental

Amount of
Positive Curvature
of the Sides

Amount of
Negative Curvature
of the Sides

Amount of
Expansion
of the Cross Section

Negative Curvature
of the Sides Versus
Straight Sides

Expansion Versus
No Expansion
of the Cross Section

FIGURE 2.9  ■   Discriminating between Different Geons (Middle and Left) is Easier 
than Discriminating between Different Variations of the Same Geon (Middle and Right).

FIGURE 2.10  ■   Illustration of 65% Contour Removal Centered at Either 
Midsegments (Left Object) or Vertices (Right Object).

Source: “Human image understanding: Recent research and a theory,” by I. Biederman, 1985, Computer 
Vision, Graphics, and Image Processing, 32, 29–73.
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In conclusion, structural theories extend feature theories by specifying how the features are 
related. Sutherland (1968) was one of the first to argue that if we want to account for our very 
impressive pattern recognition capabilities, we will need the more powerful kind of descriptive 
language contained in a structural theory. The experiments in this section show that Sutherland 
was correct. We now look at how pattern recognition occurs over time.

INFORMATION-PROCESSING STAGES

The Partial-Report Technique
To completely understand how people perform a pattern recognition task, we have to identify 
what occurs during each of the information-processing stages (pattern recognition, attention, 
working memory) discussed in Chapter 1. George Sperling (1960) is responsible for the initial 
construction of an information-processing model of performance on a visual recognition task. We 
discuss his experiment and theory in detail because it provides an excellent example of how the 
information-processing perspective has contributed to our knowledge of cognitive psychology.

Subjects in Sperling’s task saw an array of letters presented for a brief period (usually 50 
msec) and were asked to report all the letters they could remember from the display. Responses 
were highly accurate if the display contained fewer than five letters. But when the number of let-
ters was increased, subjects never reported more than an average of 4.5 letters correctly, regard-
less of how many letters were in the display.

A general problem in constructing an information-processing model is to identify the cause 
of a performance limitation. Sperling was interested in measuring the number of letters that 
could be recognized during a brief exposure, but he was aware that the upper limit of 4.5 might 
be caused by an inability to remember more than that. In other words, subjects might have 
recognized most of the letters in the display but then forgot some before they could report 
what they had seen. Sperling, therefore, changed his procedure from a whole-report procedure 
(report all the letters) to a partial-report procedure (report only some of the letters).

In the most typical case, the display consisted of three rows, each containing four letters. 
Subjects would be unable to remember all 12 letters in a display, but they should be able to 
remember four letters. The partial-report procedure required that subjects report only one 
row. The pitch of a tone signaled which of the three rows to report: the top row for a high 
pitch, the middle row for a medium pitch, and the bottom row for a low pitch. The tone 
sounded just after the display disappeared, so that subjects would have to view the entire 
display and could not simply look at a single row (Figure 2.11). Use of the partial-report 
technique is based on the assumption that the number of letters reported from the cued row 
equals the average number of letters perceived in each of the rows because the subjects did 
not know in advance which row to look at. The results of this procedure showed that subjects 

partial-report procedure A task in which observers are cued to report only certain items in a display of items

whole-report procedure A task that requires observers to report everything they see in a display of items
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could correctly report three of the four letters in a row, implying that they had recognized 
nine letters in the entire display.

It often happens that what is best remembered about a scientist’s work is not what that per-
son originally set out to investigate. Although Sperling designed the partial-report technique to 
reduce the memory requirements of his task and to obtain a “pure” measure of perception, his 
work is best remembered for the discovery of the importance of a visual sensory store. How did 
this come about? The estimate that subjects had perceived nine letters was obtained when the 
tone occurred immediately after the termination of the 50-ms exposure. In this case, subjects 
could correctly report approximately three-quarters of the letters, and three-quarters of 12 is 9. 
But when the tone was delayed until one second after the display, performance declined to only 
4.5 letters. That is, there was a gradual decline from nine letters to 4.5 as the delay of the tone 
was increased from 0 to one second (Figure 2.12).

Fixation

Time (fractions of seconds)

“G, T, F, B”

Pitch of tone signals
which row to report

NSPK

RCZQ

BFTG

Tone occurs at a
delay of 0, .15, .30,
.50, or 1 sec 

1/20 sec

ReportToneDisplay

FIGURE 2.11  ■   Sperling's (1960) Study of Sensory Memory. After the Subjects 
had Fixated on the Cross, the Letters were Flashed on the Screen Just Long Enough 
to Create a Visual Afterimage. High, Medium, and Low Tones Signaled which Row of 
Letters to Report.

Source: “The information available in brief visual presentations,” by G. Sperling, 1960, Psychological Monographs, 
74 (11, Whole No. 498).

Photo credit: iStock/Vectorig
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FIGURE 2.12  ■   Recall as a Function of Delay of a 
Signaling Tone.

Source: “The information available in brief visual presentations,” by G. 
Sperling, 1960, Psychological Monographs, 74 (11, Whole No. 498).

The most interesting aspect of the number 4.5 is that it is exactly equal to the upper limit of 
performance on the whole-report task, as represented by the blue bar in Figure 2.12. The par-
tial-report procedure has no advantage over the whole-report procedure, if the tone is delayed 
by one second or more. To explain this gradual decline in performance, Sperling proposed that 
the subjects were using a visual sensory store to recognize letters in the cued row. When they 
heard the tone, they selectively attended to the cued row in the store and tried to identify the 
letters in that row. Their success in making use of the tone depended on the clarity of infor-
mation in their sensory store. When the tone occurred immediately after termination of the 
stimulus, the clarity was sufficient for recognizing additional letters in the cued row. But as the 
clarity of the sensory image faded, it became increasingly difficult to recognize additional let-
ters. When the tone was delayed by one second, the subjects could not use the sensory store at 
all to focus on the cued row, so their performance was determined by the number of letters they 
had recognized from the entire display that happened to be in that row. Their performance 
was therefore equivalent to the whole-report procedure, in which they attended to the entire 
display.Do n
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In 1963, Sperling proposed an information-processing model of performance on his visual 
report task. The model consisted of a visual information store, scanning, rehearsal, and an auditory 
information store. The visual information store (VIS) is a sensory store that preserves information 
for a brief period lasting from a fraction of a second to a second. The decay rate depends on such 
factors as the intensity, contrast, and duration of the stimulus and also on whether exposure to the 
stimulus is followed by a second exposure. Visual masking occurs when a second exposure, consist-
ing of a brightly lighted field or a different set of patterns, reduces the effectiveness of the VIS.

For pattern recognition to occur, the information in the sensory store must be scanned. 
Sperling initially considered scanning to occur for one item at a time, as if each person had a 
sheet of cardboard with a hole in it just large enough for a single letter to appear.

The next two components of the model were rehearsal (saying the letters to oneself) and 
an auditory information store (remembering the names of the letters). To remember the items 
until recall, subjects usually reported rehearsing the items. Additional evidence for verbal 
rehearsal was found when recall errors often appeared in the form of auditory confusions—in 
other words, producing a letter that sounded like the correct letter. The advantage of the audi-
tory store is that subvocalizing the names of the letters keeps them active in memory. Sperling’s 
auditory store is part of short-term memory (STM), a topic we will consider later in the book.

Sperling revised his initial model in 1967. By this time, evidence had begun to accumulate 
suggesting that patterns were not scanned one at a time but were analyzed simultaneously. This 
distinction between performing one cognitive operation at a time (serial processing) and per-
forming more than one cognitive operation at a time (parallel processing) is fundamental in 
cognitive psychology. Sperling, therefore, modified his idea of the scan component to allow for 
pattern recognition to occur simultaneously over the entire display, although the rate of recog-
nition in a given location depended on where the subject was focusing attention.

Sperling’s model was the first that attempted to indicate how various stages (sensory store, 
pattern recognition, and STM) combined to influence performance on a visual processing task. 
It contributed to the construction of information-processing models and led to the development 
of more detailed models of how people recognize letters in visual displays.

visual information store (VIS) A sensory store that maintains visual information for approximately one-quarter of a 
second

rehearsal Repeating verbal information to keep it active in short-term memory (STM) or to transfer it into long-term 
memory (LTM)

auditory information store In Sperling’s model, this store maintains verbal information in short-term memory (STM) 
through rehearsal

serial processing Carrying out one operation at a time, such as pronouncing one word at a time

parallel processing Carrying out more than one operation at a time, such as looking at an art exhibit and making 
conversation

scan component The attention component of Sperling’s model that determines what is recognized in the visual 
information store (VIS)Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2022 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



36  Cognition

WORD RECOGNITION

The Word Superiority Effect
Much of the research on pattern recognition during the 1970s shifted away from how people 
recognize isolated letters to how people recognize letters in words. This research was stimulated 
by a finding that was labeled the word superiority effect. Reicher (1969), in his dissertation at the 
University of Michigan, investigated a possible implication of the scan component in Sperling’s 
1967 model. If the observer tries to recognize all the letters in a word simultaneously (Alderman 
et al., 2010), is it possible to recognize a four-letter unit in the same amount of time as it takes to 
recognize a single letter?

To answer this question, Reicher designed an experiment in which observers were shown a sin-
gle letter, a four-letter word, or a four-letter nonword. The task was always to identify a single letter 
by selecting one of two alternatives. The exposure of the stimulus was immediately followed by a 
visual masking field with the two response alternatives directly above the critical letter. For example, 
one set of stimuli consisted of the word WORK, the letter K, and the nonword OWRK. The two 
alternatives, in this case, were the letters D and K, which were displayed above the critical K (Figure 
2.13). Observers indicated whether they thought the letter in that position had been a D or a K.

Word
condition

Letter
condition

Nonword
condition

Test display

W  O  R  K

K

O  W  R  K

X X X X

X X X X

X X X X

D
K

D
K

D
K

Mask and letter
alternatives

FIGURE 2.13  ■   Example of the Three 
Experimental Conditions in Reicher's 
(1969) Experiment. The Mask and Response 
Alternatives Followed the test Display. 
The Task was to Decide which of the Two 
Alternatives had Appeared in the Test 
Position.

Source: “Perceptual recognition as a function of meaningful-
ness of stimulus material,” by G. M. Reicher, 1969, Journal of 
Experimental Psychology, 81, 275–280.
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This example illustrates several characteristics of Reicher’s design. First, the four-letter word 
has the same letters as the four-letter nonword. Second, the position of the critical letter is the 
same for the word and the nonword. Third, both of the response alternatives make a word 
(WORD or WORK) for the word condition and a nonword for the nonword condition. Fourth, 
the memory requirements are minimized by requiring that subjects identify only a single letter, 
even when four letters are presented.

The results showed that subjects were significantly more accurate in identifying the 
critical letter when it was part of a word than when it was part of a nonword or when it was 
presented alone (the word superiority effect). Eight of the nine subjects did better on single 
words than on single letters. The one subject who reversed this trend was the only subject 
who said that she saw the words as four separate letters, which she made into words; the 
other subjects said that they experienced a word as a single word, not as four letters making 
up a word.

The word superiority effect is an example of top-down processing. It demonstrates how our 
knowledge of words helps us to more rapidly recognize the letters within a word. Top-down pro-
cessing, based on knowledge stored in LTM, can aid pattern recognition in different ways. Top-
down processing also helps us recognize words in sentences because the sentence constrains 
which words can meaningfully fit into the sentence.

A Model of the Word Superiority Effect
One of the great challenges for psychologists interested in word recognition has been to explain 
the reasons for the word superiority effect (Pollatsek & Rayner, 1989). A particularly influen-
tial model, the interactive activation model proposed by McClelland and Rumelhart (1981), 
contains several basic assumptions that build on the assumptions of Rumelhart’s earlier model 
of letter recognition. The first assumption is that visual perception involves parallel processing. 
There are two different senses in which processing occurs in parallel. Visual processing is spa-
tially parallel, resulting in the simultaneous processing of all four letters in a four-letter word. 
This assumption is consistent with Sperling’s parallel scan and with Rumelhart’s model of how 
people attempt to recognize an array of letters.

Visual processing is also parallel in the sense that recognition occurs simultaneously at three 
different levels of abstraction. The three levels—the feature level, the letter level, and the word 
level—are shown in Figure 2.14. A key assumption of the interactive activation model is that the 
three levels interact to determine what we perceive. Knowledge about the words of a language 
interacts with incoming feature information to provide evidence about which letters are in the 
word. This is illustrated by the arrows in Figure 2.14, which show that the letter level receives 
information from both the feature level and the word level.

word superiority effect The finding that accuracy in recognizing a letter is higher when the letter is in a word than when 
it appears alone or is in a nonword

interactive activation model A theory proposing that both feature knowledge and word knowledge combine to provide 
information about the identity of letters in a word

Do n
ot 

co
py

, p
os

t, o
r d

ist
rib

ute

Copyright ©2022 by SAGE Publications, Inc.  
This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher.



38  Cognition

Visual input

Letter
level

Word
level

Feature
level

FIGURE 2.14  ■   The Three Levels of the Interactive Activation Model, with Arrows 
Indicating the Excitatory Connections and Circles Indicating Inhibitory Connections.

There are two kinds of connections between levels: excitatory connections and inhibi-
tory connections. Excitatory connections provide positive evidence, and inhibitory connec-
tions provide negative evidence about the identity of a letter or word. For example, a diagonal 
line provides positive evidence for the letter K (and all other letters that contain a diagonal 
line) and negative evidence for the letter D (and all other letters that do not contain a diagonal 
line). Excitatory and inhibitory connections also occur between the letter level and word level, 
depending on whether the letter is part of the word in the appropriate position. Recognizing 
that the first letter of a word is a W increases the activation level of all words that begin with a W 
and decreases the activation level of all other words.

The interactive activation model was the first step for McClelland and Rumelhart in their 
development of neural network models of cognition. They referred to such models as paral-
lel distributed processing (PDP) models because information is evaluated in parallel and is 
distributed throughout the network. A neural network model consists of several components 

excitatory connection A positive association between concepts that belong together, as when a diagonal line provides 
support for the possibility that a letter is a K

inhibitory connection A negative association between concepts that do not belong together, as when the presence of a 
diagonal line provides negative evidence that a letter is a D

parallel distributed processing (PDP) When information is simultaneously collected from different sources and 
combined to reach a decision

neural network model A theory in which concepts (nodes) are linked to other concepts through excitatory and inhibitory 
connections to approximate the behavior of neural networks in the brain
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(Rumelhart et al., 1986), some of which we have already considered in the interactive activation 
model. These include the following:

 1. A set of processing units called nodes. Nodes are represented by features, letters, 
and words in the interactive activation model. They can acquire different levels of 
activation.

 2. A pattern of connections among nodes. Nodes are connected to one another by 
excitatory and inhibitory connections that differ in strength.

 3. Activation rules for the nodes. Activation rules specify how a node combines its 
excitatory and inhibitory inputs with its current state of activation.

 4. A state of activation. Nodes can be activated to various degrees. We become conscious 
of nodes that are activated above a threshold level of conscious awareness. For instance, 
we become consciously aware of the letter K in the word WORK when it receives 
enough excitatory influences from the feature and word levels.

 5. Output functions of the nodes. The output functions relate activation levels to 
outputs—for example, what threshold has to be exceeded for conscious awareness.

 6. A learning rule. Learning generally occurs by changing the weights of the excitatory 
and inhibitory connections between the nodes, and the learning rule specifies how to 
make these changes.

The last component—the learning component—is one of the most important features 
of a neural network model because it enables the network to improve its performance. An 
example would be a network model that learns to make better discriminations among letters 
by increasing the weights of the distinctive features—those features that are most helpful for 
discriminating.

By 1992, the neural network approach had resulted in thousands of research efforts and an 
industry that spends several hundred million dollars annually (Schneider & Graham, 1992). 
The excitement of this approach can be attributed to several reasons. First, many psychologists 
believe that neural network models more accurately portray how the brain works than other, 
more serial models of behavior. Second, adjusting the excitatory and inhibitory weights that 
link nodes allows a network to learn, and this may capture how people learn. Third, the models 
allow for a different kind of computing in which many weak constraints (such as evidence from 
both the feature and word levels) can be simultaneously considered. Neural network models 
have continued to be developed into one of the most powerful learning methods in AI, as indi-
cated by their application to recognizing scenes.

nodes The format for representing concepts in a semantic network

activation rule A rule that determines how inhibitory and excitatory connections combine to determine the total activation 
of a concept
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SCENE RECOGNITION

Word recognition differs from letter recognition because words are composed of interacting let-
ters. Similarly, scene recognition differs from object recognition because scenes are composed 
of interacting objects that are typically arranged in a meaningful spatial layout. Recognizing 
objects in scenes is often driven by accomplishing goals, as explained in the next section.

Goal-Driven Scene Understanding
Although our physical environment is usually stable, our goals can change and determine how we 
interact with the environment. Figure 2.15(A) illustrates four goals of scene understanding based 
on recognition, visual search, navigation, and action. Recognition determines whether a scene 
belongs to a certain category (a beach) or depicts a particular place (my living room). Visual search 
involves locating specific objects within the scene, such as sand, a bridge, or a lamp. Navigation 
determines whether it is possible to reach a particular location, such as crossing a stream. Action 
encompasses a broad set of activities, such as swimming, hiking, and watching television.

The four questions at the top of the figure are examples of questions we might ask for each 
of the different scenes (Malcolm et al., 2016). The first question “What is the scene?” requires 
scene recognition. It begins with gist—the perceptual and semantic information acquired from 
a single glance. Gist can include a conceptual understanding (a party), the spatial layout of the 
environment, and a few objects. It depends on the familiarity of stored representations, such as 
furniture is found in a living room. Unfamiliar scenes require more processing time than a brief 
glance to achieve scene understanding.

The second question “Where is X?” requires visual search using eye movements rather 
than a quick glance. Eye fixations focus on particular objects rather than the overall envi-
ronment. They are required to answer the third question “How do I get from A to B?” 
Answering this question requires finding paths and potential obstacles that could block 
navigation, such as approaching objects. The last question “What can I do here?” deter-
mines actions, the topic of Chapter 6. Figure 2.15(B) shows scene properties that are needed 
to fulfill these goals. Low-level features, such as edges, establish the identity of objects. 
Object identities determine semantic categories and the actions that can be performed in 
those environments.

Deep Neural Networks
Computer scientists continued to develop the neural network models of the 1980s and con-
nectionist models based on deep neural networks, which are some of the great success stories of 
AI (Sejnowski, 2018). Deep neural networks utilize the same principles as simpler networks but 
have added multiple layers of connections to fine-tune the weights of thousands of connections.

Figure 2.16 illustrates the application of deep neural networks to image recognition. The 
input begins with pixels from the image, and the output classifies the image as one of 1000 

deep neural networks Networks that learn by adjusting thousands of connections in multiple layers
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Semantic category

chair

groundroad
bridge

treetrunk
leaves

sand

hutsea
cloud sky

living
room

park

beach

Real-world scene
B

Low-level features

A

Object identities Action affordances

window
painting

rug
coffee table
chair couch

lampdoor

Recognition
Visual search
Navigation
Action

What is this Place?
Where is the beach hut?
How do I get to the water?
Can I swim here?

What is the park called?
Where is the bridge?
How do I cross the stream?
Can I cycle here?

What room is this?
Where is the painting?
How do I get to the couch?
Can I watch tv here?

  FIGURE 2.15  ■     Goal-driven Scene Recognition.  

Gazelle Model T Rocking
chair

Payphone Jackfruit Banjo

ImageNet Challenge: Classify the images (1000 possible)

1st Hidden Layer

Receptive Field ƒ + Σ ƒ + Σ

Higher
Layers 

2nd Hidden Layer

Feature Maps
Deep Convolutional Neural Network

  FIGURE 2.16  ■     Application of a Deep Neural Network to Classify Images.  

  Source : “Comparing the visual representations and performance of humans and deep neural networks,” by R. A. 
  Jacobs & C. J. Bates, 2019  ,  Current Directions in Psychological Science, 28 , 34–39. 
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possible pictures. In between are many hidden layers in which each layer receives input from a 
small number of units in the previous layer to establish more global connectivity. The layers are 
hidden because, in contrast to the three layers in Figure 2.14, their function can be difficult to 
interpret.

The authors of this article, Robert Jacobs and Christopher Bates at the University of 
Rochester’s Department of Brain and Cognitive Sciences, review evidence that people are still 
superior at recognizing images under adverse conditions. The authors list several reasons for 
our perceptual advantage over machines. We learn to recognize objects in perceptually rich, 
dynamic, interactive environments whereas networks are trained on static images. We can take 
advantage of three-dimensional features whereas networks are more limited to two dimensions. 
A disadvantage for people, however, is our capacity limits because we cannot visually perceive 
and represent all aspects of a scene. These limits can nonetheless occasionally be an asset when 
we learn to focus on the more discriminative features.

Artificial intelligence continues to improve and the use of drones illustrates how pattern 
recognition can be shared by people and machines (Morris & Chakrabarty, 2019). Drones are 
limited by small payload capabilities and onboard processing power so some of the computa-
tional demands are offloaded to a ground computer (Figure 2.17). Joint activity between the 
equipment and the operator requires sensing, planning, and communication based on coordi-
nation between people and machines.

Figure 2.18 shows an application to a search and track task at the Ames Research Center 
in California. A controller monitors the search for a target and switches to a track mode if the 
target is found. At some point, the target may take evasive maneuvers that require the controller 
to switch back to the search mode. A key component of this interaction is the boundary between 
human and machine decisions. For instance, humans at the console may control the search phase 
and allow the drone to conduct the tracking phase. Although Morris and Chakrabarty (2019) 
focus on searching and tracking, they argue that many of the design principles apply to integrat-
ing human decision-making with various types of devices. An important decision related to the 
ethical use of AI discussed in Chapter 1 requires determining who should be tracked.

data

data

commands

commandscommands

commands

data

FIGURE 2.17  ■   Commanding a Drone.
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APPLICATIONS

Brain Pathways
People’s remarkable ability to recognize patterns occasionally falls victim to various types of visual 
disorders, and studying these disorders has contributed to our understanding of visual percep-
tion (Haque et al., 2018). For example, patients with brain damage have revealed a dissociation 
between knowing what an object is and knowing where the object is located. Damage to one part 
of the brain results in an impairment of the ability to recognize visual stimuli, whereas damage to 
another part of the brain results in an impairment of the ability to indicate their spatial location.

These impaired aspects of vision are similarly impaired in visual imagery (Levine et al., 
1985). A patient with object identification difficulties was unable to draw or describe the 
appearance of familiar objects from memory, despite being able to draw and describe in great 
detail the relative locations of landmarks in his neighborhood, cities in the United States, and 
furniture in his hospital room. A patient with object localization difficulties could not use his 
memory to perform well on the spatial localization tasks but could provide detailed descriptions 
of the appearance of a variety of objects.

Figure 2.19 illustrates the two pathways that support the localization and the identification 
of objects. The where pathway is primarily associated with object location and spatial attention. 
It is often referred to as the dorsal pathway because it is located in the dorsal (or upper) part of 
the brain. The dorsal pathway runs upward to the parietal lobes and has strong connections 
with the frontal lobe that coordinates limb and eye movements.

FIGURE 2.18  ■   Testing the Search and Track Mode at the Ames Research 
Center Indoor Facility.
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The other pathway, which results in object recognition, is known as the what pathway. It travels 
from the primary visual cortex in the occipital lobe and processes information such as shape, size, 
and color, as previously illustrated in Figure 2.4. It is primarily located in the temporal lobes and is 
often referred to as the ventral pathway because it is located in the ventral (or lower) part of the brain.

Figure 2.20 shows the approximate locations of specialized areas for object recognition. 
Some parts of the brain—the occipital face area (OFA)—respond more to faces than to other 
types of objects. Although this area is best activated by faces, it can also be activated by other 
objects, particularly if the person has acquired previous expert knowledge about those objects 
(Haque et al., 2018). The visual word form area (VWFA) is activated during reading.

Visual Disorders
Much of our knowledge of how the brain recognizes patterns comes from studies of patients 
with visual agnosia. Visual agnosia is a general disruption in the ability to recognize objects. 
Agnosia patients have normal visual acuity and generally show no memory deficits. The dis-
ability is also limited to a single sensory modality—for example, if you show a patient a set of 
keys, he will not be able to recognize them; however, if you hand him the keys to feel, he will 
easily identify them as keys. There are specialized forms of this disorder, such as an inability to 
recognize faces or familiar places.

Posterior
parietal cortex

Ventral stream

Dorsal stream

V1

V4
(on ventral surface)

V5/MT

V2

V3

Inferior temporal cortex

FIGURE 2.19  ■   Brain Pathways for Spatial (Dorsal) and 
Object (Ventral) Identification.

visual agnosia An impairment in the recognition of visual objectsDo n
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Two general categories of agnosia disorders are apperceptive agnosia and associative 
agnosia (Farah, 2004). Apperceptive agnosia disrupts the ability of patients to group visual 
elements into contours, surfaces, and objects (Farah, 2004). Evidence from these patients 
demonstrates the pattern recognition is normally hierarchical—starting with simple cells 
in the primary visual cortex and then combining these features to form a perception of 
the whole object, such as the face in Figure 2.4. The fusiform gyrus in the temporal lobe is 
of critical importance to this process (Konen et al., 2011), as is the lateral occipital cortex 
(Ptak et al., 2014). It is the last stage of combining features that impairs people with visual 
agnosia.

Inadequate eye movements contribute to the failure to combine visual features (Raz & 
Levin, 2017). A patient with apperceptive agnosia identified an object as a bird from a visual 
organization test, shown in the left panel of Figure 2.21. He identified the circled fragment as 
a beak but ignored the rest of the picture. In the right panel from an overlapping-figures test, a 
patient hesitated in deciding whether the circled fragment was an arrow or the ear of a cat. His 
eye movements did not track the length of the object to determine its identity.

apperceptive agnosia An inability to combine visual features into contours, surfaces, and objects

FIGURE 2.20  ■   Specialized Areas of the Brain. Areas Discussed in the Text 
Include the Parietal Lobe (SPL and IPL), the Temporal Lobe (MST and MT), 
the Visual Cortex (V1-V7), the Occipital Face Area (OFA), and the Visual Word 
Form Area (VWFA).
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Inadequate eye movements also occur in reading when patients perform shorter and delayed 
eye movements that limit their ability to integrate letters (Raz & Levin, 2017). A training task, 
shown in the right panel of Figure 2.22A, requires them to track letters in an alphabetical 
sequence. Another training task, shown in Figure 2.22B, provides practice in reading words. 
The number of letters in the words increases while the presentation time decreases as training 
progresses. To perceive the entire word, patients are trained to fixate on either the beginning 
or the end of the word depending on their particular deficit. Training tasks also exist for large 
visual fields. The person in the left panel of Figure 2.22A is searching for a square composed of 
four red dots.

In contrast to apperceptive agnosia, associative agnosia patients can combine visual ele-
ments into a whole perception but are unable to identify that perception. The most curious fact 
about these patients is they can accurately copy a line drawing but are unable to recognize what 
they have drawn! Essentially these patients can perceive the object but can no longer associate 
their perception with its meaning.

FIGURE 2.21  ■   Object Identification Tests.

associative agnosia An ability to combine visual features into a whole object but an inability to recognize that object
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Face blindness provides an informative case study of how the “what” stream fails to connect 
to other parts of the brain. An area of the cortex known as the fusiform face area is responsive 
to recognizing that an object is a face, even for people with face blindness (Mitchell, 2018). 
Although the brain performs the initial stage of face processing perfectly well, it fails to commu-
nicate that information with the frontal cortex for people with face blindness (Figure 2.23). The 
link to the frontal cortex is necessary to recall information such as the person’s name, personal 
details, relationship, and past interactions.

FIGURE 2.22  ■   Training Eye Movements (A) and Reading Words (B).

FIGURE 2.23  ■   Disruptive Pathways Causing Face Blindness.

Source: Adapted from INNATE: How the Wring of Our Brains Shapes Who We Are, by K. J. Mitchell, 
2018, Princeton, NJ: Princeton.
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The condition can be so debilitating that patients may not recognize close family members 
or even their own face. The famous neuropsychologist Oliver Sacks suffered from face blindness 
prior to his death. His book The Man Who Mistook His Wife for a Hat is based on a clinical case 
study of such a patient (Sacks, 1985). Interestingly, many patients suffering from this disorder 
can recognize the faces of loved ones after they hear them speak.

SUMMARY

Pattern recognition is a skill that people perform very well. Three explanations of pattern rec-
ognition are template, feature, and structural theories. A template theory proposes that people 
compare two patterns by measuring their degree of overlap. A template theory has difficulty 
accounting for many aspects of pattern recognition. The most common theories of pattern rec-
ognition, therefore, assume that patterns are analyzed into features. Perceptual discrimination 
requires discovering distinctive features that distinguish between patterns. Treisman’s experi-
ments on feature integration theory explored how a perceiver combines two features that are 
analyzed by separate parts of the visual system. Structural theories state explicitly how the fea-
tures of a pattern are joined together. They provide a more complete description of a pattern 
and are particularly useful for describing patterns consisting of intersecting lines.

Sperling’s interest in the question of how many letters can be perceived during a brief exposure 
resulted in the construction of information-processing models for visual tasks. Sperling pro-
posed that information is preserved very briefly in a visual information store, where all the let-
ters can be simultaneously analyzed. When a letter is recognized, its name is verbally rehearsed 
and preserved in an auditory store that is a part of short-term memory.

Recognition of letters in a word is influenced by perceptual information and the letter context. 
The finding that a letter can be recognized more easily when it is part of a word than when 
it is part of a nonword or is presented by itself has been called the word superiority effect. An 
influential model of this effect is the interactive activation model proposed by McClelland and 
Rumelhart. Its major assumption is that knowledge about the words of a language interacts 
with incoming feature information to provide evidence regarding which letters are in the word. 
Scenes are composed of interacting objects that are typically arranged in a meaningful spatial 
layout. Recognizing objects in scenes is often driven by accomplishing goals. Deep neural net-
works, used in scene recognition and many other complex AI tasks, utilize the same principles 
of simpler networks but have added multiple layers of connections to fine-tune the weights of 
thousands of connections.

Visual agnosia is a disruption in the ability to recognize objects. There are specialized forms of 
recognition disorders, such as an inability to recognize objects or familiar places. The “where” 
pathway is located in the upper parietal area and is primarily associated with object location 
and spatial attention. The “what” pathway supports object recognition and is primarily located 
in the lower temporal lobes. Patients with apperceptive agnosia are unable to combine visual 
features into a complete pattern whereas associative agnosia patients can, but these patients can 
not identify the pattern.
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RECOMMENDED READING

Hoffman's (1998) book, Visual Intelligence, provides both a readable and scholarly analysis of 
how we construct descriptions of objects. Fallshore and Schooler (1995) argue that verbally 
describing faces can lower later recognition because verbal descriptions ignore configural infor-
mation. Kristjansson and Egeth (2019) provide an extensive history of how feature integration 
theory integrated relevant research in cognition, perception, and neuropsychology. Experts 
provide an overview of the theoretical contributions of neural networks (McClelland et al., 
2010). For a history of neural networks that has resulted in the exciting accomplishments of 
deep networks read The Deep Learning Revolution (Sejnowski, 2018). A very readable introduc-
tion to genetics and brain circuits is Kevin Mitchell's (2018) book INNATE: How the Wiring of 
Our Brains Shapes Who We Are.
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