Your Mathematics

 Standards Companion at a GlanceIndexes Cross-Referencing Your State Standards with the Common Core appear at the front of the book.

This column shows where to find instructional guidance for that standard or topic.

Indexes Cross-Referencing

 Your State StandardsAlaska Standards for Mathematics
Arizona's College and Career Ready Standards
Arematics Florida Standards (MAFS)
Georgia Standards of Excellence-Mathematic

...........

ida

Conceptual Category: NUMBER and QUANTITY								
N-RN. 1	HS.N-RN.A. 1	MAFS.						
N-RN2	HSN-PN. 2	MAFS.						

N-RN. 1	HS.N-RN.A. 1	MAFS.912.N-RN.1.1	MGSE--12.N.RN. 1	N.RN.A. 1	14
N-RN. 2	HS.N-RN.A. 2	MAFS.912.N-RN.1.2	MGSEG-12.N.R.R.2	N.RN.A. 2	16
N-RN. 3	HS.N-RN.B. 3	MAFS. $912 . \mathrm{N}$-RN. 2.3	MGSE9-12.N.R.R. 3	N.RN.B. 3	18
N-Q. 1	HS.N-Q.A. 1	MAFS.912.N-Q.1.1	MGSE9-12.N.Q. 1	N.Q.A. 1	23
N-Q. 2	HS.N-Q.A. 2	MAFS.912.N-Q.1.2	MGSE9-12.N.O. 2	N.Q.A. 2	24
N-Q. 3	HS.N-Q.A. 3	MAFS.912.N-Q.1.3	MGSEE-12.N.Q. 3	N.Q.A. 3	25
N-CN. 1	HS.N-CN.A. 1	MAFS.912.N.CN. 1.1	MGSE9-12.N.CN. 1	N.CN.A. 1	31
N-CN. 2	HS.N.CN.A. 2	MAFS.912.N-CN. 1.2	MGSE9-12.N.CN. 2	N.CN.A. 2	32
N-CN.3 (+)	HS.N-CN.A.3 +	MAFS.912.N-CN. 1.3	MGSE9-12.N.CN. 3	N.CN.A.3 +	33
N-CN.4 (+)	HS.N-CN.B. $4+$	MAFS.912.N.CN.2.4	MGSE9-12.N.CN. 4	N.CN.B.4+	35
N-CN.5 (+)	HS.N-CN.B. $5+$	MAFS.912.N.CN. 2.5	MGSE-12.N.CN. 5	N.CN.B. $5+$	36
N-CN.6 (+)	HS.N-CN.B. $6+$	MAFS.912.N-CN.2.6	MGSE9-12.N.CN. 6	N.CN.B. $6+$	38
N-CN. 7	HS.N-CN.C. 7	MAFS. $912 . \mathrm{N}$-CN. 3.7	MGSE9-12.N.CN. 7	N.cn.c. 7	40
N-CN. 8 (+)	HS.N-CN.C. $8+$	MAFS.912.N-CN. 3.8	MGSE9-12.N.CN. 8	N.CN.C. $8+$	42
N-CN. 9 (t)	HS.N-C.N.C. $9+$	MAFS.912.N-CN. 3.9	MGSE9-12.N.CN. 9	N.CN.C.9 +	43
N-VM. 1 (t)	HS.N-V.M.A. $1+$	MAFS.912.N-VM. 1.1	MGSE--12.N.VM. 1	N.VM.A. $1+$	49
N-VM. 2 (+	HS.N-VM.A. $2+$	MAF5.912.N-VM.1.2	MGSE9-12.N.VM. 2	N.VM.A. $2+$	50
N-VM.3 (t)	HS.N-VM.A. $3+$	MAFS.912.N-VM.1.3	MGSE9-12.N.VM. 3	N.VM.A.3 +	51
N-VM.4.a (t)	HS.N-VM.B.4.a +	MAFS.912.N-VM.2.4a	MGSE9-12.N.VM.4a	N.vM.B.4.a +	53
N-VM. 4.6 ($($)	HS.N-VM.B.4. ${ }^{\text {+ }}$	MAFS.912.N-VM.2.4b	MGSE9-12.N.VM.4b	N.VM.B.4.b +	53
N-VM.4.c(+)	HS.N-VM.B.4.C+	MAFS.912.N-VM.2.4c	MGSE9-12.N.VM.4C	N.vM.B.4.c +	54
N-VM.5.a (+)	HS.N-VM.B.5.a +	MAFS.912.N-VM.2.5a	MGSE9-12.N.VM.5a	N.vM.B.5.a +	55
N-VM.5.b (t)	HS.N-VM.B.5.b +	MAFS.912.N-VM.2.5b	MGSE9-12.N.VM.5b	N.VM.B.5.b +	55
N-VM. 6 (t)	HS.N-VM.C. $6+$	MAFS.912.N-VM. 3.6	MGSE9-12.N.VM. 6	N.VM.C. $6+$	58
N-VM. 7 (+)	HS.N-VM.C. $7+$	MAFS.912.N-VM. 3.7	MGSE9-12.N.VM. 7	N.VM.C. $7+$	60
N-VM. 8 (+)	HS.N-VM.C. $8+$	MAFS.912.N-VM. 3.8	MGSE--12.N.VM. 8	N.VM.C. $8+$	61
N-VM. 9 (+)	HS.N-VM.C. $9+$	MAFS.912.N-VM. 3.9	MGSE9-12.N.VM. 9	N.VM.C.9 +	62
N-VM. 10 (+	HS.N-VM.C. $10+$	MAFS. $912 . \mathrm{N}$-VM. 3.10	MGSE9-12.N.VM. 10	N.VM.C. $10+$	63
N-VM. 11 (+)	HS.N-VM.C. $11+$	MAFS.912.N-VM. 3.11	MGSE9-12.N.vM. 11	N.VM.C. $11+$	64
N-VM. $12(+)$	HS.N-VM.C. $12+$	MAFS.912.N-VM.3.12	MGSE9-12.N.VM. 12	N.VM.C. $12+$	66
Conceptual Category: ALGEBRA					
A.SSE.1.a	HS.A-SSE.A.1.a	MAFS.912.A.SSE.1.1a	MGSE9-12.A.SSE.1a	A.SSE.A.1.a	81
A.SSE.1.b	HS.A-SSE.A.1. ${ }^{\text {b }}$	MAFS.912.A.SSE.1.1b	MGSE9-12.A.SSE.1b	A.SSE.A.1.b	81
A.SSE. 2	HS.A-SSE.A. 2	MAFS.912.A-SSE.1.2	MGSE--12.A.SSE. 2	A.SSEA. 2	82
A-SSE.3.a	HS.A.SSE.B.3.a	MAFS.912.A.SSE.2.3a	MGSE9-12.A.SSE.3a	A.SSE.B.3.a	84

I-1

For states that closely correlate to CCSS-M, state-specific standards are organized by
conceptual category

Many states organize their standards by courses rather than conceptual domain. In those cases you can find in the first column your state's most common organization for courses required for graduation and see where that correlates to the mathematics information in this book.

Iowa	Kansas	New Jersey	$\begin{aligned} & \text { Common } \\ & \text { Core } \\ & \text { Standard } \end{aligned}$	Page
HSS.IC.A. 2	S-IC. 2	S.IC.A. 2	S.IC.A. 2	384
HSS.I. .B. 3	S-1. 3	S.IC.B. 3	S.IC. B. 3	388
HSS.I.C. .4	S-1. 4	S.IC.B. 4	S.IC. B. 4	390
HSS.I.C.B. 5	S-IC. 5	S.IC.B. 5	S.IC.B. 5	392
HSS.IC.B. 6	S-1. 6	S.IC.B. 6	S.IC.B. 6	394
HSS.CP.A. 1	S-CP. 1	S.CP. 11	S.CP. 1.1	403
HSS.CP.A. 2	S-CP. 2	S.CP.A. 2	S.CP.A. 2	405
HSS.CP.A. 3	S-CP. 3	S.CP.A. 3	S.CP.A. 3	406
HSS.CP.A. 4	S-CP. 4	S.CP.A. 4	S.CP.A. 4	407
HSS.CP.A. 5	S-CP. 5	S.CP.A. 5	S.CP.A. 5	409
HSS.CP.B. 6	S-CP. 6	S.CP.в. 6	S.СР.в. 6	412
HSS.CP.B. 7	S-CP. 7	S.CP. 7	S.CP. 7	413
HSS.CP. 8.8 (+)	S-CP. 8 (t)	S.CP.8. +	S.CP. 8 +	415

Iowa	Kansas	New Jersey	Common Core Standard	Page
HSS.CP.B. 9 (+)	S-CP.9 (+)	S.CP.B. $9+$	S.CP.B. $9+$	417
HSS.MD.A. $1(+)$	S-MD. 1 (+)	S.MD.A. $1+$	S.MD.A. $1+$	423
HSS.MD.A. $2(+)$	S-MD. $2(+)$	S.MD.A.2 +	S.MD.A.2 +	424
HSS.MD.A. $3(+)$	S-MD. 3 (+)	S.MD.A.3 +	S.MD.A.3+	426
HSS.MD.A.4 (t)	S-MD. 4 (+)	S.MD.A.4 +	S.MD.A. $4+$	427
HSS.MD.B.5.a (+)	S-MD.5.a (t)	S.MD.B.5.a +	S.MD.B.5.a +	429
HSS.MD.B.5.b (+)	S-MD.5.b (+)	S.MD.B.5.b +	S.MD.B.5.b +	430
HSS.MD.B.6 (t)	S-MD. 6 (t)	S.MD.B. $6+$	S.MD.B. 6 +	431
HSS.MD.B.7 (+)	S-MD.7 (+)	S.MD.B. $7+$	S.MD.B. 7 +	432
UNCORRELATED STANDARDS				

Arkansas Mathematics Standards

Arkansas Standard	Common Core Standard	Page	Arkansas Standard	Common Core Standard	Page
Course: Algebra I			HSA.RE. ${ }^{\text {P } 12}$	A.RE. ${ }^{\text {d }} 12$	137
HSN.RN.B. 3	N.RN.B. 3	18	HSFFI.E. 1	F.IF. A. 1	146
HSN.Q.A. 1	N.Q.A. 1	23	HSFI.I.A. 2	F.IF. A. 2	148
HSN.Q.A. 2	N.Q.A. 2	24	HSFI.F.A. 3	F.1F.A. 3	150
HSN.Q.A. 3	N.Q.A. 3	25	HS.I.E. 4	F.IF.B. 4	152
HSA.SSE.A. 1	A.SSE.A.1.a	81	HSFII. $\mathrm{S}^{\text {. } 5}$	F.IF.E. 5	154
HSA.SSE.A. 1	A.SSE.A.1.b	81	HSF.I.E. 6	F.I.E. 6	155
HSA.SSE.A. 2	A.SSE.A. 2	82	HSF.I.E. 7	filf. $7 . a$	158
HSA.SSE.B. 3	A.SSE.B.3.a	84	HSF.\|F. C. 7	PIIEC. 7.6	160
HSA.SEE.B. 3	A.SSE. .3.b	84	HSFF.F.C. 7	F.IFC. 7.8	165
HSA.APR.A. 1	A.APR.A. 1	91	HSFIIF. 8	F.IFC. .8.a	168
HSA.APR.B. 3	A.APR.B. 3		HSF.IFC. 9	F.IFC. 9	170
HSA.APR.C. 4	A.APR.C. 4	97	HSF.BEA. 1	F.BF.A. 1.a	177
HSA.APR.D. 7	A.APR.D. $7+$	102	HSE.BEB. 3	F.b.E. 3	183
HSA.CED.A. 1	A.CED.A. 1	107	HSF.LE.A. 1	F.L.E.A.1.a	194
HSA.CED.A. 2	A.CED.A. 2	109	HSELE. . 1	F.LE.A.1.b	196
HSA.CED.A. 3	A.CED.A. 3	110	HSF.LE.A. 1	F.LE.A.1.C	197
HSA.CED.A. 4	A.CED.A. 4	111	HSFLE.E.A 2	F.LE.A. 2	198
HSA.REI.A. 1	A.REI.A. 1	116	HSFLE.A. 3	F.LE.A. 3	200
HSA.REI.A. 2	A.REIA. 2	118	HSFL.E.B. 5	FLLE. $\cdot 5$	204
HSA.REIB. 3	A.REI.B. 3	121	HSS.ID.A. 1	S.ID.A. 1	351
HSA.REI. B. 4	A.REI.B.4.a	122	HSS.ID. A. 2	S.ID.A. 2	353
HSA.REI.B. 4	A.rel.b.4.b	124	HSS.ID.A. 3	S.ID.A. 3	354
HSA.REI.C. 5	A.REI.C. 5	127	HSS.ID.B. 5	S.ID.B. 5	359
HSA.REI.C. 6	A.REI.C. 6	128	HSS.ID.B. 6	S.ID.B.6.a	361
HSA.REI.C. 7	A.REI.C. 7	130	HSS.ID. C. 7	S.ID.C. 7	369
HSA.REED. 10	A.REI.D. 10	134	HSS.ID. C. 8	S.ID.C. 8	371
HSA.REI.D. 11	A.REI.D. 11	135	HSS.ID.C. 9	S.ID.C. 9	375

Arkansas Standard	Common Core Standard	Page
Course: Algebra II		
HSN.rn.A. 1	N.RN.A. 1	14
HSN.RN.A. 2	N.RN.A. 2	16
HSN.Q.A. 2	N.Q.A. 2	24
HSN.CN.A. 1	N.CN.A. 1	31
HSN.CN.A. 2	N.CN.A. 2	32
HSN.CN.A. 3	N.CN.A.3 +	33
HSN.CN.C. 7	N.CN.C. 7	40
HSN.CN.C. 8	N.CN.C. $8+$	42
HSN.CN.C. 9	N.CN.C.9 +	43
HSN.VM.C. 6	N.VM.C.6 +	58
HSN.VM.C. 7	N.VM.C. $7+$	60
HSN.VM.C. 8	N.Vм.C. $8+$	61
HSN.VM.C. 9	N.VM.C. $9+$	62
HSN.VM.C. 10	N.VM.C. $10+$	63
HSN.VM.C. 12	N.VM.C. $12+$	66
HSA.SSE.A. 1	A.SSE.A.1.a	81
HSA.SSE.A. 1	A.SSE.A.1.b	81
HSA.SSE.A. 2	A.SSEA. 2	82
HSA.SSE.B. 3	A.SEE.B.3.a	84
HSA.SSE.B. 3	A.SEE.B.3.b	84
HSA.SSE.B. 3	A.SSE.B.3.C	84
HSA.APR.A. 1	A.APR.A. 1	91
HSA.APR.A. 2	A.APR.B. 2	93
HSA.APR.A. 3	A.APR.B. 3	95
HSA.APR.A. 4	A.APR.C. 4	97
HSA.APR.D. 6	A.APR.D. 6	101
		(Continued)
		1-7

Where a state has standards that are not present in CCSS-M, they are noted here.

Conceptual Category Overview: Gives a brief description of the conceptual categories or strands of mathematics, allowing you to see the big picture of what students should learn across the high school grades.

Suggested Materials:

Provides teachers with a list of materials that will be helpful in introducing the ideas within the domains that follow.

Key Vocabulary:

Vocabulary included in the conceptual category. This terminology can be used for building a word wall in the classroom.

Cluster: Statements that summarize groups of related standards. Note that

Identifying information for this cluster, stated as: Conceptual Category. Domain. Cluster.

Standards: Mathematical statements that define what students should understand and be able to do.
standards from different clusters may sometimes be closely related.

Conceptual Category

 and Domain: Focus for this group of standards as described in the Common Core (CCSS-M). Consult the index to find your state standard that correlates.Domain Overview: Gives a brief description of the big ideas covered in each domain.

The Real Number System (N.RN)

Domain Overview
Students use the positive rational numbers in some form as early as third grade. After completing standards for

 to consider the wide variety of real numbers going beyond their work with suare roots and cube roots that arose fí
geometry (with area and volume explorations). The deppth of understanding that there is an infinite number of real geomety (wetwerea and volume explorations.) The edeph h f understanding that there is an infinitie number of real the number e, logarithms. values of t tigonometric functions, and radian measures and their reliance on n. Here, students
work with the properties of exponents to have another way to communicate about irational numbers (using fractional Ponents such as $\sqrt[5]{7^{3}}=7^{\frac{2}{3}}$) and to create a deeper conceptual understanding of exponents and their ropoerties that extends beyond counting factors (comparing cases such as 2^{3} and 2^{133}.

Key Vocabulary: Highlights the specific vocabulary relevant to each domain. Students should be able to use these terms in talking about mathematics; the standard for Mathematical Practice 6: Attend to Precision calls for students to use mathematical terminology appropriately.

Related Content Standards: Provides a list of standards connected to this topic, including those at other grade levels and conceptual categories. Consider the related standards as described by your state as you plan instruction for each cluster.

What the TEACHER does: An overview of actions the teacher might take in introducing and teaching the standard. This is not meant to be allinclusive, but rather to give you an idea of what classroom instruction might look like. Illustrations may be included, detailing how to use materials to teach a concept when using models and representations called for in the standard.

Standard: The standard as written in the Common Core, followed by an explanation of the meaning of the mathematics in that standard, including examples.

What the STUDENTS do: Some examples of what students may do as they explore and begin to understand the standard. This is not intended to be directive, but rather to frame what student actions may look like.

STANDARD 2 (N.RN.A.2)

Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Students are able to use both radical and exponential forms to write expressions and can translate flexibly between them.
Students use symbolic examples, such as $a^{2} \sqrt{a}=a^{2} \cdot a^{\frac{1}{2}}=a^{\frac{5}{2}}$, and contextual examples, like solving $V=\frac{4}{3} \pi r^{3}$ for r.
What the TEACHER does:

- Uses problems that allow students to use either radical or exponential forms and requires them to explain their
- reasoning for their choice
cube for one side, $V=s^{3}, s=V^{\frac{1}{3}}=\sqrt[3]{V}$.
- Requires students to discuss the meanings of their
computations when rewriting and simplifying radical and rational exponent expressions.

Addressing Student Misconceptions and Common Errors
Negative exponents can be a problem when using fractional exponents. Students offen think $9^{-\frac{1}{2}}$ means -3 instead of $\frac{1}{3}$. Using a
calculator to calculate $9^{\frac{-1}{2}}$ helps, as does looking at the graph of $y=9^{*}$ and $x=-\frac{1}{2}$, to see where the functional value occurs.

The curve is $y=9$, and the vertical line is $x=-\frac{1}{2}$. The scale shows the intersection of the curve and graph is a positive number
that is between zero and 0.4 , so -3 is excluded as a solution while $\frac{1}{3}$ appears as a viable estimate of the intersection value.
Connections to Modeling
Solving problems that involve formulas with exponents and/or radicals. Solving problems that involve volume and area.
Related Content Standards
A.SSE.B. 3 F.IF.C. 7 e

What the STUDENTS do:

- Explain the meaning of rational exponents in terms of
radicals and roots.
- Explain their reasoning when using either notation to solve problems involving radicals.

Connections to Modeling:

Modeling is signaled out at the high school level as a curricular goal in and of itself, and it is a unifying theme across all conceptual categories. This section provides suggestions for integrating modeling into classroom instruction.

Addressing Student

Misconceptions and Common

Errors: Each standard includes a misconception or common student error around the standard and suggested actions to address those misconceptions or errors.

Mathematical Practice or Process Standards:

The mathematical practices emphasized in this sample plan are included.

Sample Planning Page: At the end

 of each domain, you will find a sample planning page based on one standard or group of standards for that domain While these are not complete lesson plans, they provide ideas, activities, and a structure for planning

Materials: The materials used in the Sample Activity are listed.

Goal: The purpose of this activity and how it connects to previous and future ideas is stated.

Sample Activity: An example of an activity that addresses this standard is provided.

